Add MCP Server Superpowers section with agent gathering patterns
- Document how MQTT transforms existing MCP servers into event-driven powerhouses - Show practical examples: Google Drive downloader, database backup orchestration - Demonstrate agent 'gathering' patterns for distributed resource sharing - Cover long-running task coordination and resource multiplexing - Illustrate how multiple MCP clients can share expensive MCP server resources - Add transformation table showing common MCP servers + MQTT superpowers
This commit is contained in:
parent
bf4b0e2f52
commit
cdd7711a08
158
README.md
158
README.md
@ -472,6 +472,164 @@ filesystem_write_docs → mqtt_publish("docs/updated")
|
||||
- **Privacy Layers**: Sensitive data stays with local models, public data uses cloud models
|
||||
- **Scalability**: Add new models and MCP servers without changing existing workflows
|
||||
|
||||
## ⚡ MCP Server Superpowers: Background Automation via MQTT
|
||||
|
||||
**Transform any MCP server into an event-driven powerhouse!** Instead of just responding to direct calls, existing MCP servers can gain "superpowers" through MQTT coordination:
|
||||
|
||||
### 🔄 Background Processing Examples
|
||||
|
||||
**Google Drive Batch Downloader:**
|
||||
```bash
|
||||
# MCP Client publishes download queue
|
||||
{
|
||||
"topic": "gdrive/download-queue",
|
||||
"payload": {
|
||||
"files": ["doc1.pdf", "spreadsheet.xlsx", "presentation.pptx"],
|
||||
"destination": "/local/backup/",
|
||||
"batch_id": "backup-2025-09-17"
|
||||
}
|
||||
}
|
||||
|
||||
# Google Drive MCP server subscribes and processes in background
|
||||
# Publishes progress updates via MQTT
|
||||
{
|
||||
"topic": "gdrive/download-progress",
|
||||
"payload": {
|
||||
"batch_id": "backup-2025-09-17",
|
||||
"completed": 2,
|
||||
"total": 3,
|
||||
"current_file": "presentation.pptx",
|
||||
"status": "downloading"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Database Backup Orchestration:**
|
||||
```bash
|
||||
# Scheduler publishes backup trigger
|
||||
{
|
||||
"topic": "database/backup-trigger",
|
||||
"payload": {
|
||||
"databases": ["users", "orders", "analytics"],
|
||||
"backup_type": "incremental",
|
||||
"schedule_id": "daily-backup"
|
||||
}
|
||||
}
|
||||
|
||||
# Multiple database MCP servers coordinate the backup
|
||||
# PostgreSQL MCP server handles users & orders
|
||||
# MongoDB MCP server handles analytics
|
||||
# S3 MCP server handles upload coordination
|
||||
```
|
||||
|
||||
**Code Repository Analysis Pipeline:**
|
||||
```bash
|
||||
# Git webhook triggers analysis
|
||||
{
|
||||
"topic": "code/analysis-request",
|
||||
"payload": {
|
||||
"repo": "github.com/user/project",
|
||||
"commit": "abc123",
|
||||
"analysis_types": ["security", "performance", "documentation"]
|
||||
}
|
||||
}
|
||||
|
||||
# Specialized MCP servers process in parallel:
|
||||
# - Security scanner MCP server
|
||||
# - Performance analyzer MCP server
|
||||
# - Documentation generator MCP server
|
||||
# Each publishes results to "code/analysis-results/{type}"
|
||||
```
|
||||
|
||||
### 🎯 Event-Driven MCP Patterns
|
||||
|
||||
**1. Subscription-Based Processing**
|
||||
- MCP servers subscribe to relevant MQTT topics
|
||||
- Process tasks asynchronously in background
|
||||
- Publish results/progress for other services
|
||||
|
||||
**2. Workflow Orchestration**
|
||||
- Chain multiple MCP servers via MQTT topics
|
||||
- Each server triggers the next step in the pipeline
|
||||
- Build complex automation without tight coupling
|
||||
|
||||
**3. Real-Time Coordination**
|
||||
- Multiple MCP servers collaborate on single tasks
|
||||
- Share progress updates via MQTT
|
||||
- Coordinate resource usage and scheduling
|
||||
|
||||
**4. Event Sourcing & Audit**
|
||||
- All MCP server actions published as MQTT events
|
||||
- Build comprehensive audit trails
|
||||
- Enable replay and debugging capabilities
|
||||
|
||||
### 💡 Existing MCP Servers + MQTT = Superpowers
|
||||
|
||||
**Transform these common MCP servers:**
|
||||
|
||||
| Original MCP Server | + MQTT Superpowers |
|
||||
|-------------------|--------------------|
|
||||
| File System MCP | → Background file sync, automated cleanup, distributed backup |
|
||||
| Database MCP | → Scheduled migrations, replication monitoring, auto-scaling |
|
||||
| GitHub MCP | → PR auto-review, CI/CD coordination, issue triaging |
|
||||
| Slack MCP | → Smart notifications, automated responses, team coordination |
|
||||
| Email MCP | → Automated campaigns, template processing, delivery tracking |
|
||||
| AWS MCP | → Infrastructure orchestration, cost optimization, auto-scaling |
|
||||
|
||||
### 🤝 Agent "Gathering" Patterns
|
||||
|
||||
**Multiple MCP clients can access the same MCP server resources via MQTT coordination:**
|
||||
|
||||
**Example: File Processing Queue**
|
||||
```bash
|
||||
# File server MCP publishes available files
|
||||
{
|
||||
"topic": "files/processing-queue",
|
||||
"payload": {
|
||||
"file_id": "document_123.pdf",
|
||||
"size": "2.5MB",
|
||||
"type": "pdf",
|
||||
"priority": "high"
|
||||
}
|
||||
}
|
||||
|
||||
# Multiple agents "gather" and claim work:
|
||||
# - PDF analysis agent subscribes to files/processing-queue
|
||||
# - OCR agent subscribes to files/processing-queue
|
||||
# - Translation agent subscribes to files/processing-queue
|
||||
# First agent to respond gets the work item
|
||||
```
|
||||
|
||||
**Distributed Resource Sharing:**
|
||||
- **Database connections**: Multiple agents share database MCP server via MQTT coordination
|
||||
- **File system access**: Agents coordinate file operations through filesystem MCP + MQTT
|
||||
- **API rate limits**: Share expensive API calls across many agents via API MCP + MQTT
|
||||
- **Computing resources**: Distribute heavy tasks across multiple MCP servers
|
||||
|
||||
**Long-Running Task Coordination:**
|
||||
```bash
|
||||
# Agent publishes long-running task request
|
||||
{
|
||||
"topic": "tasks/video-processing",
|
||||
"payload": {
|
||||
"video_url": "https://example.com/video.mp4",
|
||||
"operations": ["transcode", "thumbnail", "metadata"],
|
||||
"callback_topic": "results/video-123"
|
||||
}
|
||||
}
|
||||
|
||||
# Video processing MCP server handles the work
|
||||
# Other agents subscribe to "results/video-123" for completion
|
||||
```
|
||||
|
||||
**Key Benefits:**
|
||||
- **Resource Multiplexing**: Many MCP clients share expensive MCP server resources
|
||||
- **Distributed Processing**: Long-running tasks don't block individual agents
|
||||
- **Event-Driven Coordination**: Agents "gather" around shared resources via MQTT
|
||||
- **Scalable Architecture**: Add more agents without changing MCP server code
|
||||
- **Fault Tolerance**: If one agent fails, others continue processing
|
||||
- **Real-Time Updates**: Live progress tracking across all participants
|
||||
|
||||
## 🔍 Common AI Model Challenges mcmqtt Solves
|
||||
|
||||
### "How can I coordinate multiple AI agents working on the same task?"
|
||||
|
Loading…
x
Reference in New Issue
Block a user