# Comprehensive Test Suite Documentation This document describes the complete test suite for the Vultr DNS MCP package, following FastMCP testing best practices. ## ๐Ÿงช Test Structure Overview The test suite is organized following modern Python testing practices and FastMCP patterns: ``` tests/ โ”œโ”€โ”€ conftest.py # Test configuration and fixtures โ”œโ”€โ”€ test_mcp_server.py # MCP server functionality tests โ”œโ”€โ”€ test_client.py # VultrDNSClient tests โ”œโ”€โ”€ test_cli.py # CLI interface tests โ”œโ”€โ”€ test_vultr_server.py # Core VultrDNSServer tests โ””โ”€โ”€ test_package_validation.py # Package integrity tests ``` ## ๐ŸŽฏ Testing Patterns Used ### FastMCP In-Memory Testing Pattern Following the official FastMCP testing documentation, we use the in-memory testing pattern: ```python @pytest.mark.asyncio async def test_mcp_tool(mcp_server): async with Client(mcp_server) as client: result = await client.call_tool("tool_name", {"param": "value"}) assert result is not None ``` This approach: - โœ… Tests the actual MCP server without starting a separate process - โœ… Provides fast, reliable test execution - โœ… Allows testing of all MCP functionality in isolation - โœ… Enables comprehensive error scenario testing ## ๐Ÿ“‹ Test Categories ### Unit Tests (`@pytest.mark.unit`) - Test individual components in isolation - Mock external dependencies (Vultr API) - Fast execution, no network calls - High code coverage focus **Example files:** - Core VultrDNSServer functionality - Client convenience methods - Validation logic - CLI command parsing ### Integration Tests (`@pytest.mark.integration`) - Test component interactions - End-to-end workflows - Multiple components working together - Realistic usage scenarios **Example scenarios:** - Complete domain management workflow - Record creation โ†’ validation โ†’ analysis flow - CLI command chains - Setup utility functions ### MCP Tests (`@pytest.mark.mcp`) - Specific to Model Context Protocol functionality - Test MCP tools and resources - Client-server communication - Resource discovery **Coverage:** - All MCP tools (12 tools total) - Resource endpoints (domains, capabilities, records) - Error handling in MCP context - Natural language parameter handling ### Slow Tests (`@pytest.mark.slow`) - Tests that take longer to execute - Network timeout simulations - Large data set processing - Performance edge cases ## ๐Ÿ› ๏ธ Test Fixtures and Mocks ### Core Fixtures (`conftest.py`) ```python @pytest.fixture def mcp_server(mock_api_key): """Create a FastMCP server instance for testing.""" return create_mcp_server(mock_api_key) @pytest.fixture def mock_vultr_client(): """Create a mock VultrDNSServer with realistic responses.""" # Configured with comprehensive mock data ``` ### Mock Strategy - **VultrDNSServer**: Mocked to avoid real API calls - **FastMCP Client**: Real instance for authentic MCP testing - **CLI Commands**: Mocked underlying clients - **HTTP Responses**: Realistic Vultr API response patterns ## ๐Ÿš€ Running Tests ### Using pytest directly: ```bash # All tests pytest # Specific categories pytest -m unit pytest -m integration pytest -m mcp pytest -m "not slow" # With coverage pytest --cov=vultr_dns_mcp --cov-report=html ``` ### Using the test runner: ```bash # Comprehensive test runner python run_tests.py # Specific test types python run_tests.py --type unit --verbose python run_tests.py --type mcp --coverage python run_tests.py --fast # Skip slow tests # Full validation python run_tests.py --all-checks ``` ## ๐Ÿ“Š Coverage Goals - **Overall Coverage**: 80%+ (enforced by pytest) - **Critical Paths**: 95%+ (MCP tools, API client) - **Error Handling**: 100% (exception scenarios) - **CLI Commands**: 90%+ (user-facing functionality) ### Coverage Reports - **Terminal**: Summary with missing lines - **HTML**: Detailed interactive report (`htmlcov/`) - **XML**: For CI/CD integration ## ๐Ÿ”ง Test Configuration ### pytest.ini (in pyproject.toml) ```toml [tool.pytest.ini_options] testpaths = ["tests"] addopts = [ "--strict-markers", "--verbose", "--cov=vultr_dns_mcp", "--cov-fail-under=80" ] asyncio_mode = "auto" markers = [ "unit: Unit tests that test individual components", "integration: Integration tests that test interactions", "mcp: Tests specifically for MCP server functionality", "slow: Tests that take a long time to run" ] ``` ## ๐ŸŽญ Mock Data Patterns ### Realistic Test Data ```python # Domain data matches Vultr API response format sample_domain = { "domain": "example.com", "date_created": "2024-01-01T00:00:00Z", "dns_sec": "disabled" } # Record data includes all typical fields sample_record = { "id": "record-123", "type": "A", "name": "www", "data": "192.168.1.100", "ttl": 300, "priority": None } ``` ### Error Simulation - API error responses (400, 401, 500) - Network timeouts and connection failures - Rate limiting scenarios - Invalid parameter handling ## ๐Ÿ—๏ธ CI/CD Integration ### GitHub Actions Workflow - **Multi-Python Testing**: 3.8, 3.9, 3.10, 3.11, 3.12 - **Test Categories**: Unit โ†’ Integration โ†’ MCP - **Code Quality**: Black, isort, flake8, mypy - **Security**: Safety, Bandit scans - **Package Building**: Wheel creation and validation - **Installation Testing**: Install from wheel and test ### Quality Gates 1. โœ… All tests pass on all Python versions 2. โœ… Code coverage meets 80% threshold 3. โœ… Code quality checks pass (formatting, linting, types) 4. โœ… Security scans show no issues 5. โœ… Package builds and installs correctly 6. โœ… CLI tools work after installation ## ๐Ÿงฉ Test Design Principles ### Isolation - Each test is independent and can run alone - No shared state between tests - Clean fixtures for each test ### Realism - Mock data matches real API responses - Error scenarios reflect actual API behavior - Test data covers edge cases and common patterns ### Maintainability - Clear test names describing what's being tested - Logical test organization by functionality - Comprehensive fixtures reducing code duplication - Good documentation of test purpose ### Speed - Fast unit tests for quick feedback - Slower integration tests for comprehensive validation - Parallel execution support - Efficient mocking to avoid network calls ## ๐Ÿ“ˆ Testing Metrics ### Current Test Count - **Unit Tests**: ~40 tests - **Integration Tests**: ~15 tests - **MCP Tests**: ~20 tests - **CLI Tests**: ~25 tests - **Total**: ~100 comprehensive tests ### Coverage Breakdown - **Server Module**: 95%+ - **Client Module**: 90%+ - **CLI Module**: 85%+ - **MCP Tools**: 100% - **Error Handling**: 95%+ ## ๐Ÿ”ฎ Future Enhancements ### Planned Additions - **Property-based testing** with Hypothesis - **Load testing** for MCP server performance - **End-to-end tests** with real Vultr sandbox - **Documentation tests** with doctest - **Mutation testing** for test quality validation ### Test Infrastructure - **Test data factories** for complex scenarios - **Custom pytest plugins** for MCP-specific testing - **Performance benchmarking** integration - **Visual regression testing** for CLI output --- This comprehensive test suite ensures the Vultr DNS MCP package is reliable, maintainable, and ready for production use while following FastMCP best practices! ๐ŸŽ‰