feat: add PyPI package download statistics and popularity analysis tools
- Add PyPIStatsClient for pypistats.org API integration - Implement get_package_download_stats for recent download statistics - Implement get_package_download_trends for time series analysis - Implement get_top_packages_by_downloads for popularity rankings - Add comprehensive MCP tools for download statistics - Include download trends analysis with growth indicators - Add repository information and metadata integration - Provide comprehensive test coverage - Add demo script and usage examples - Update README with new features and examples Signed-off-by: longhao <hal.long@outlook.com>
This commit is contained in:
parent
5344726014
commit
99c603ed37
37
README.md
37
README.md
@ -10,6 +10,8 @@ A Model Context Protocol (MCP) server for querying PyPI package information, dep
|
||||
- 🐍 Python version compatibility checking
|
||||
- 🔍 **Advanced dependency analysis and recursive resolution**
|
||||
- 📥 **Package download with dependency collection**
|
||||
- 📊 **Download statistics and popularity analysis**
|
||||
- 🏆 **Top packages ranking and trends**
|
||||
- 🏢 Private PyPI repository support
|
||||
- ⚡ Fast async operations with caching
|
||||
- 🛠️ Easy integration with MCP clients
|
||||
@ -199,6 +201,11 @@ The server provides the following MCP tools:
|
||||
6. **resolve_dependencies** - Recursively resolve all package dependencies with detailed analysis
|
||||
7. **download_package** - Download package and all dependencies to local directory
|
||||
|
||||
### Download Statistics & Popularity
|
||||
8. **get_download_statistics** - Get comprehensive download statistics for any package
|
||||
9. **get_download_trends** - Analyze download trends and time series data (last 180 days)
|
||||
10. **get_top_downloaded_packages** - Get the most popular packages by download count
|
||||
|
||||
## Usage Examples
|
||||
|
||||
Once configured in your MCP client (Claude Desktop, Cline, Cursor, Windsurf), you can ask questions like:
|
||||
@ -220,6 +227,13 @@ Once configured in your MCP client (Claude Desktop, Cline, Cursor, Windsurf), yo
|
||||
- "Download the requests package with all dependencies to ./downloads folder"
|
||||
- "Collect all packages needed for Django development"
|
||||
|
||||
### Download Statistics & Popularity Analysis
|
||||
- "What are the download statistics for the requests package this month?"
|
||||
- "Show me the download trends for numpy over the last 180 days"
|
||||
- "What are the top 10 most downloaded Python packages today?"
|
||||
- "Compare the popularity of Django vs Flask vs FastAPI"
|
||||
- "Which web framework has the highest download count this week?"
|
||||
|
||||
### Example Conversations
|
||||
|
||||
**User**: "Check if Django 4.2 is compatible with Python 3.9"
|
||||
@ -234,6 +248,12 @@ Once configured in your MCP client (Claude Desktop, Cline, Cursor, Windsurf), yo
|
||||
|
||||
*[Uses get_package_dependencies tool]*
|
||||
|
||||
**User**: "Show me the download statistics for the requests package and tell me which is more popular: requests or urllib3?"
|
||||
|
||||
**AI Assistant**: I'll get the download statistics for both packages and compare their popularity.
|
||||
|
||||
*[Uses get_download_statistics tool for both packages]*
|
||||
|
||||
### Programmatic Usage
|
||||
|
||||
```python
|
||||
@ -247,6 +267,18 @@ result = await mcp_client.call_tool("check_package_python_compatibility", {
|
||||
info = await mcp_client.call_tool("get_package_info", {
|
||||
"package_name": "requests"
|
||||
})
|
||||
|
||||
# Example: Get download statistics
|
||||
stats = await mcp_client.call_tool("get_download_statistics", {
|
||||
"package_name": "numpy",
|
||||
"period": "month"
|
||||
})
|
||||
|
||||
# Example: Get top downloaded packages
|
||||
top_packages = await mcp_client.call_tool("get_top_downloaded_packages", {
|
||||
"period": "week",
|
||||
"limit": 10
|
||||
})
|
||||
```
|
||||
|
||||
## Development Status
|
||||
@ -258,9 +290,12 @@ Current implementation status:
|
||||
- ✅ PyPI API client with caching
|
||||
- ✅ MCP tools implementation (package info, versions, dependencies)
|
||||
- ✅ Python version compatibility checking
|
||||
- ✅ Advanced dependency analysis and recursive resolution
|
||||
- ✅ Package download with dependency collection
|
||||
- ✅ **Download statistics and popularity analysis**
|
||||
- ✅ **Top packages ranking and trends**
|
||||
- ✅ CI/CD pipeline with multi-platform testing
|
||||
- ⏳ Private repository support (planned)
|
||||
- ⏳ Advanced dependency analysis (planned)
|
||||
|
||||
## Contributing
|
||||
|
||||
|
227
examples/download_stats_demo.py
Normal file
227
examples/download_stats_demo.py
Normal file
@ -0,0 +1,227 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Demo script for PyPI package download statistics functionality.
|
||||
|
||||
This script demonstrates how to use the new download statistics tools
|
||||
to analyze PyPI package popularity and trends.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
from datetime import datetime
|
||||
|
||||
from pypi_query_mcp.tools.download_stats import (
|
||||
get_package_download_stats,
|
||||
get_package_download_trends,
|
||||
get_top_packages_by_downloads,
|
||||
)
|
||||
|
||||
|
||||
async def demo_package_download_stats():
|
||||
"""Demonstrate package download statistics retrieval."""
|
||||
print("=" * 60)
|
||||
print("PyPI Package Download Statistics Demo")
|
||||
print("=" * 60)
|
||||
|
||||
# Example packages to analyze
|
||||
packages = ["requests", "numpy", "django", "flask"]
|
||||
|
||||
for package_name in packages:
|
||||
print(f"\n📊 Download Statistics for '{package_name}':")
|
||||
print("-" * 50)
|
||||
|
||||
try:
|
||||
# Get download statistics for the last month
|
||||
stats = await get_package_download_stats(package_name, period="month")
|
||||
|
||||
# Display basic info
|
||||
metadata = stats.get("metadata", {})
|
||||
downloads = stats.get("downloads", {})
|
||||
analysis = stats.get("analysis", {})
|
||||
|
||||
print(f"Package: {metadata.get('name', package_name)}")
|
||||
print(f"Version: {metadata.get('version', 'unknown')}")
|
||||
print(f"Summary: {metadata.get('summary', 'No summary available')[:80]}...")
|
||||
|
||||
# Display download counts
|
||||
print(f"\nDownload Counts:")
|
||||
print(f" Last Day: {downloads.get('last_day', 0):,}")
|
||||
print(f" Last Week: {downloads.get('last_week', 0):,}")
|
||||
print(f" Last Month: {downloads.get('last_month', 0):,}")
|
||||
|
||||
# Display analysis
|
||||
if analysis:
|
||||
print(f"\nAnalysis:")
|
||||
print(f" Total Downloads: {analysis.get('total_downloads', 0):,}")
|
||||
print(f" Highest Period: {analysis.get('highest_period', 'N/A')}")
|
||||
|
||||
growth = analysis.get('growth_indicators', {})
|
||||
if growth:
|
||||
print(f" Growth Indicators:")
|
||||
for indicator, value in growth.items():
|
||||
print(f" {indicator}: {value}")
|
||||
|
||||
# Display repository info if available
|
||||
project_urls = metadata.get('project_urls', {})
|
||||
if project_urls:
|
||||
print(f"\nRepository Links:")
|
||||
for name, url in project_urls.items():
|
||||
if url:
|
||||
print(f" {name}: {url}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error getting stats for {package_name}: {e}")
|
||||
|
||||
|
||||
async def demo_package_download_trends():
|
||||
"""Demonstrate package download trends analysis."""
|
||||
print("\n" + "=" * 60)
|
||||
print("PyPI Package Download Trends Demo")
|
||||
print("=" * 60)
|
||||
|
||||
# Analyze trends for a popular package
|
||||
package_name = "requests"
|
||||
|
||||
print(f"\n📈 Download Trends for '{package_name}':")
|
||||
print("-" * 50)
|
||||
|
||||
try:
|
||||
# Get download trends (without mirrors for cleaner data)
|
||||
trends = await get_package_download_trends(package_name, include_mirrors=False)
|
||||
|
||||
trend_analysis = trends.get("trend_analysis", {})
|
||||
time_series = trends.get("time_series", [])
|
||||
|
||||
print(f"Package: {package_name}")
|
||||
print(f"Data Points: {trend_analysis.get('data_points', 0)}")
|
||||
print(f"Total Downloads: {trend_analysis.get('total_downloads', 0):,}")
|
||||
print(f"Average Daily: {trend_analysis.get('average_daily', 0):,.0f}")
|
||||
print(f"Trend Direction: {trend_analysis.get('trend_direction', 'unknown')}")
|
||||
|
||||
# Display date range
|
||||
date_range = trend_analysis.get('date_range', {})
|
||||
if date_range:
|
||||
print(f"Date Range: {date_range.get('start')} to {date_range.get('end')}")
|
||||
|
||||
# Display peak day
|
||||
peak_day = trend_analysis.get('peak_day', {})
|
||||
if peak_day:
|
||||
print(f"Peak Day: {peak_day.get('date')} ({peak_day.get('downloads', 0):,} downloads)")
|
||||
|
||||
# Show recent data points (last 7 days)
|
||||
if time_series:
|
||||
print(f"\nRecent Download Data (last 7 days):")
|
||||
recent_data = [item for item in time_series if item.get('category') == 'without_mirrors'][-7:]
|
||||
for item in recent_data:
|
||||
date = item.get('date', 'unknown')
|
||||
downloads = item.get('downloads', 0)
|
||||
print(f" {date}: {downloads:,} downloads")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error getting trends for {package_name}: {e}")
|
||||
|
||||
|
||||
async def demo_top_packages():
|
||||
"""Demonstrate top packages by downloads."""
|
||||
print("\n" + "=" * 60)
|
||||
print("Top PyPI Packages by Downloads Demo")
|
||||
print("=" * 60)
|
||||
|
||||
periods = ["day", "week", "month"]
|
||||
|
||||
for period in periods:
|
||||
print(f"\n🏆 Top 10 Packages (last {period}):")
|
||||
print("-" * 50)
|
||||
|
||||
try:
|
||||
# Get top packages for this period
|
||||
top_packages = await get_top_packages_by_downloads(period=period, limit=10)
|
||||
|
||||
packages_list = top_packages.get("top_packages", [])
|
||||
total_found = top_packages.get("total_found", 0)
|
||||
|
||||
print(f"Found {total_found} packages")
|
||||
print(f"Data Source: {top_packages.get('data_source', 'unknown')}")
|
||||
|
||||
if top_packages.get("note"):
|
||||
print(f"Note: {top_packages['note']}")
|
||||
|
||||
print(f"\nRankings:")
|
||||
for package in packages_list:
|
||||
rank = package.get("rank", "?")
|
||||
name = package.get("package", "unknown")
|
||||
downloads = package.get("downloads", 0)
|
||||
print(f" {rank:2d}. {name:<20} {downloads:>12,} downloads")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error getting top packages for {period}: {e}")
|
||||
|
||||
|
||||
async def demo_package_comparison():
|
||||
"""Demonstrate comparing multiple packages."""
|
||||
print("\n" + "=" * 60)
|
||||
print("Package Comparison Demo")
|
||||
print("=" * 60)
|
||||
|
||||
# Compare web frameworks
|
||||
frameworks = ["django", "flask", "fastapi", "tornado"]
|
||||
|
||||
print(f"\n🔍 Comparing Web Frameworks (last month downloads):")
|
||||
print("-" * 70)
|
||||
|
||||
comparison_data = []
|
||||
|
||||
for framework in frameworks:
|
||||
try:
|
||||
stats = await get_package_download_stats(framework, period="month")
|
||||
downloads = stats.get("downloads", {})
|
||||
last_month = downloads.get("last_month", 0)
|
||||
|
||||
comparison_data.append({
|
||||
"name": framework,
|
||||
"downloads": last_month,
|
||||
"metadata": stats.get("metadata", {}),
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error getting stats for {framework}: {e}")
|
||||
|
||||
# Sort by downloads (descending)
|
||||
comparison_data.sort(key=lambda x: x["downloads"], reverse=True)
|
||||
|
||||
# Display comparison
|
||||
print(f"{'Rank':<4} {'Framework':<12} {'Downloads':<15} {'Summary'}")
|
||||
print("-" * 70)
|
||||
|
||||
for i, data in enumerate(comparison_data, 1):
|
||||
name = data["name"]
|
||||
downloads = data["downloads"]
|
||||
summary = data["metadata"].get("summary", "No summary")[:30]
|
||||
print(f"{i:<4} {name:<12} {downloads:<15,} {summary}...")
|
||||
|
||||
|
||||
async def main():
|
||||
"""Run all demo functions."""
|
||||
print("🚀 Starting PyPI Download Statistics Demo")
|
||||
print(f"Timestamp: {datetime.now().isoformat()}")
|
||||
|
||||
try:
|
||||
# Run all demos
|
||||
await demo_package_download_stats()
|
||||
await demo_package_download_trends()
|
||||
await demo_top_packages()
|
||||
await demo_package_comparison()
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print("✅ Demo completed successfully!")
|
||||
print("=" * 60)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\n❌ Demo interrupted by user")
|
||||
except Exception as e:
|
||||
print(f"\n❌ Demo failed with error: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Run the demo
|
||||
asyncio.run(main())
|
257
pypi_query_mcp/core/stats_client.py
Normal file
257
pypi_query_mcp/core/stats_client.py
Normal file
@ -0,0 +1,257 @@
|
||||
"""PyPI download statistics client using pypistats.org API."""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
|
||||
from .exceptions import (
|
||||
InvalidPackageNameError,
|
||||
NetworkError,
|
||||
PackageNotFoundError,
|
||||
PyPIServerError,
|
||||
RateLimitError,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PyPIStatsClient:
|
||||
"""Async client for PyPI download statistics API."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
base_url: str = "https://pypistats.org/api",
|
||||
timeout: float = 30.0,
|
||||
max_retries: int = 3,
|
||||
retry_delay: float = 1.0,
|
||||
):
|
||||
"""Initialize PyPI stats client.
|
||||
|
||||
Args:
|
||||
base_url: Base URL for pypistats API
|
||||
timeout: Request timeout in seconds
|
||||
max_retries: Maximum number of retry attempts
|
||||
retry_delay: Delay between retries in seconds
|
||||
"""
|
||||
self.base_url = base_url.rstrip("/")
|
||||
self.timeout = timeout
|
||||
self.max_retries = max_retries
|
||||
self.retry_delay = retry_delay
|
||||
|
||||
# Simple in-memory cache
|
||||
self._cache: dict[str, dict[str, Any]] = {}
|
||||
self._cache_ttl = 3600 # 1 hour (data updates daily)
|
||||
|
||||
# HTTP client configuration
|
||||
self._client = httpx.AsyncClient(
|
||||
timeout=httpx.Timeout(timeout),
|
||||
headers={
|
||||
"User-Agent": "pypi-query-mcp-server/0.1.0",
|
||||
"Accept": "application/json",
|
||||
},
|
||||
follow_redirects=True,
|
||||
)
|
||||
|
||||
async def __aenter__(self):
|
||||
"""Async context manager entry."""
|
||||
return self
|
||||
|
||||
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
||||
"""Async context manager exit."""
|
||||
await self.close()
|
||||
|
||||
async def close(self):
|
||||
"""Close the HTTP client."""
|
||||
await self._client.aclose()
|
||||
|
||||
def _validate_package_name(self, package_name: str) -> str:
|
||||
"""Validate and normalize package name.
|
||||
|
||||
Args:
|
||||
package_name: Package name to validate
|
||||
|
||||
Returns:
|
||||
Normalized package name
|
||||
|
||||
Raises:
|
||||
InvalidPackageNameError: If package name is invalid
|
||||
"""
|
||||
if not package_name or not package_name.strip():
|
||||
raise InvalidPackageNameError(package_name)
|
||||
|
||||
# Basic validation
|
||||
normalized = package_name.strip().lower()
|
||||
return normalized
|
||||
|
||||
def _get_cache_key(self, endpoint: str, package_name: str = "", **params) -> str:
|
||||
"""Generate cache key for API data."""
|
||||
param_str = "&".join(f"{k}={v}" for k, v in sorted(params.items()) if v is not None)
|
||||
return f"{endpoint}:{package_name}:{param_str}"
|
||||
|
||||
def _is_cache_valid(self, cache_entry: dict[str, Any]) -> bool:
|
||||
"""Check if cache entry is still valid."""
|
||||
import time
|
||||
return time.time() - cache_entry.get("timestamp", 0) < self._cache_ttl
|
||||
|
||||
async def _make_request(self, url: str) -> dict[str, Any]:
|
||||
"""Make HTTP request with retry logic.
|
||||
|
||||
Args:
|
||||
url: URL to request
|
||||
|
||||
Returns:
|
||||
JSON response data
|
||||
|
||||
Raises:
|
||||
NetworkError: For network-related errors
|
||||
PackageNotFoundError: When package is not found
|
||||
RateLimitError: When rate limit is exceeded
|
||||
PyPIServerError: For server errors
|
||||
"""
|
||||
last_exception = None
|
||||
|
||||
for attempt in range(self.max_retries + 1):
|
||||
try:
|
||||
logger.debug(f"Making request to {url} (attempt {attempt + 1})")
|
||||
|
||||
response = await self._client.get(url)
|
||||
|
||||
# Handle different HTTP status codes
|
||||
if response.status_code == 200:
|
||||
return response.json()
|
||||
elif response.status_code == 404:
|
||||
# Extract package name from URL for better error message
|
||||
package_name = url.split("/")[-2] if "/" in url else "unknown"
|
||||
raise PackageNotFoundError(package_name)
|
||||
elif response.status_code == 429:
|
||||
retry_after = response.headers.get("Retry-After")
|
||||
retry_after_int = int(retry_after) if retry_after else None
|
||||
raise RateLimitError(retry_after_int)
|
||||
elif response.status_code >= 500:
|
||||
raise PyPIServerError(response.status_code)
|
||||
else:
|
||||
raise PyPIServerError(
|
||||
response.status_code,
|
||||
f"Unexpected status code: {response.status_code}",
|
||||
)
|
||||
|
||||
except httpx.TimeoutException as e:
|
||||
last_exception = NetworkError(f"Request timeout: {e}", e)
|
||||
except httpx.NetworkError as e:
|
||||
last_exception = NetworkError(f"Network error: {e}", e)
|
||||
except (PackageNotFoundError, RateLimitError, PyPIServerError):
|
||||
# Don't retry these errors
|
||||
raise
|
||||
except Exception as e:
|
||||
last_exception = NetworkError(f"Unexpected error: {e}", e)
|
||||
|
||||
# Wait before retry (except on last attempt)
|
||||
if attempt < self.max_retries:
|
||||
await asyncio.sleep(self.retry_delay * (2**attempt))
|
||||
|
||||
# If we get here, all retries failed
|
||||
raise last_exception
|
||||
|
||||
async def get_recent_downloads(
|
||||
self, package_name: str, period: str = "month", use_cache: bool = True
|
||||
) -> dict[str, Any]:
|
||||
"""Get recent download statistics for a package.
|
||||
|
||||
Args:
|
||||
package_name: Name of the package to query
|
||||
period: Time period ('day', 'week', 'month')
|
||||
use_cache: Whether to use cached data if available
|
||||
|
||||
Returns:
|
||||
Dictionary containing recent download statistics
|
||||
|
||||
Raises:
|
||||
InvalidPackageNameError: If package name is invalid
|
||||
PackageNotFoundError: If package is not found
|
||||
NetworkError: For network-related errors
|
||||
"""
|
||||
normalized_name = self._validate_package_name(package_name)
|
||||
cache_key = self._get_cache_key("recent", normalized_name, period=period)
|
||||
|
||||
# Check cache first
|
||||
if use_cache and cache_key in self._cache:
|
||||
cache_entry = self._cache[cache_key]
|
||||
if self._is_cache_valid(cache_entry):
|
||||
logger.debug(f"Using cached recent downloads for: {normalized_name}")
|
||||
return cache_entry["data"]
|
||||
|
||||
# Make API request
|
||||
url = f"{self.base_url}/packages/{normalized_name}/recent"
|
||||
if period and period != "all":
|
||||
url += f"?period={period}"
|
||||
|
||||
logger.info(f"Fetching recent downloads for: {normalized_name} (period: {period})")
|
||||
|
||||
try:
|
||||
data = await self._make_request(url)
|
||||
|
||||
# Cache the result
|
||||
import time
|
||||
self._cache[cache_key] = {"data": data, "timestamp": time.time()}
|
||||
|
||||
return data
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to fetch recent downloads for {normalized_name}: {e}")
|
||||
raise
|
||||
|
||||
async def get_overall_downloads(
|
||||
self, package_name: str, mirrors: bool = False, use_cache: bool = True
|
||||
) -> dict[str, Any]:
|
||||
"""Get overall download time series for a package.
|
||||
|
||||
Args:
|
||||
package_name: Name of the package to query
|
||||
mirrors: Whether to include mirror downloads
|
||||
use_cache: Whether to use cached data if available
|
||||
|
||||
Returns:
|
||||
Dictionary containing overall download time series
|
||||
|
||||
Raises:
|
||||
InvalidPackageNameError: If package name is invalid
|
||||
PackageNotFoundError: If package is not found
|
||||
NetworkError: For network-related errors
|
||||
"""
|
||||
normalized_name = self._validate_package_name(package_name)
|
||||
cache_key = self._get_cache_key("overall", normalized_name, mirrors=mirrors)
|
||||
|
||||
# Check cache first
|
||||
if use_cache and cache_key in self._cache:
|
||||
cache_entry = self._cache[cache_key]
|
||||
if self._is_cache_valid(cache_entry):
|
||||
logger.debug(f"Using cached overall downloads for: {normalized_name}")
|
||||
return cache_entry["data"]
|
||||
|
||||
# Make API request
|
||||
url = f"{self.base_url}/packages/{normalized_name}/overall"
|
||||
if mirrors is not None:
|
||||
url += f"?mirrors={'true' if mirrors else 'false'}"
|
||||
|
||||
logger.info(f"Fetching overall downloads for: {normalized_name} (mirrors: {mirrors})")
|
||||
|
||||
try:
|
||||
data = await self._make_request(url)
|
||||
|
||||
# Cache the result
|
||||
import time
|
||||
self._cache[cache_key] = {"data": data, "timestamp": time.time()}
|
||||
|
||||
return data
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to fetch overall downloads for {normalized_name}: {e}")
|
||||
raise
|
||||
|
||||
def clear_cache(self):
|
||||
"""Clear the internal cache."""
|
||||
self._cache.clear()
|
||||
logger.debug("Stats cache cleared")
|
@ -11,6 +11,9 @@ from .tools import (
|
||||
check_python_compatibility,
|
||||
download_package_with_dependencies,
|
||||
get_compatible_python_versions,
|
||||
get_package_download_stats,
|
||||
get_package_download_trends,
|
||||
get_top_packages_by_downloads,
|
||||
query_package_dependencies,
|
||||
query_package_info,
|
||||
query_package_versions,
|
||||
@ -407,6 +410,149 @@ async def download_package(
|
||||
}
|
||||
|
||||
|
||||
@mcp.tool()
|
||||
async def get_download_statistics(
|
||||
package_name: str, period: str = "month", use_cache: bool = True
|
||||
) -> dict[str, Any]:
|
||||
"""Get download statistics for a PyPI package.
|
||||
|
||||
This tool retrieves comprehensive download statistics for a Python package,
|
||||
including recent download counts, trends, and analysis.
|
||||
|
||||
Args:
|
||||
package_name: The name of the PyPI package to analyze (e.g., 'requests', 'numpy')
|
||||
period: Time period for recent downloads ('day', 'week', 'month', default: 'month')
|
||||
use_cache: Whether to use cached data for faster responses (default: True)
|
||||
|
||||
Returns:
|
||||
Dictionary containing download statistics including:
|
||||
- Recent download counts (last day/week/month)
|
||||
- Package metadata and repository information
|
||||
- Download trends and growth analysis
|
||||
- Data source and timestamp information
|
||||
|
||||
Raises:
|
||||
InvalidPackageNameError: If package name is empty or invalid
|
||||
PackageNotFoundError: If package is not found on PyPI
|
||||
NetworkError: For network-related errors
|
||||
"""
|
||||
try:
|
||||
logger.info(f"MCP tool: Getting download statistics for {package_name} (period: {period})")
|
||||
result = await get_package_download_stats(package_name, period, use_cache)
|
||||
logger.info(f"Successfully retrieved download statistics for package: {package_name}")
|
||||
return result
|
||||
except (InvalidPackageNameError, PackageNotFoundError, NetworkError) as e:
|
||||
logger.error(f"Error getting download statistics for {package_name}: {e}")
|
||||
return {
|
||||
"error": str(e),
|
||||
"error_type": type(e).__name__,
|
||||
"package_name": package_name,
|
||||
"period": period,
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error getting download statistics for {package_name}: {e}")
|
||||
return {
|
||||
"error": f"Unexpected error: {e}",
|
||||
"error_type": "UnexpectedError",
|
||||
"package_name": package_name,
|
||||
"period": period,
|
||||
}
|
||||
|
||||
|
||||
@mcp.tool()
|
||||
async def get_download_trends(
|
||||
package_name: str, include_mirrors: bool = False, use_cache: bool = True
|
||||
) -> dict[str, Any]:
|
||||
"""Get download trends and time series for a PyPI package.
|
||||
|
||||
This tool retrieves detailed download trends and time series data for a Python package,
|
||||
providing insights into download patterns over the last 180 days.
|
||||
|
||||
Args:
|
||||
package_name: The name of the PyPI package to analyze (e.g., 'django', 'flask')
|
||||
include_mirrors: Whether to include mirror downloads in analysis (default: False)
|
||||
use_cache: Whether to use cached data for faster responses (default: True)
|
||||
|
||||
Returns:
|
||||
Dictionary containing download trends including:
|
||||
- Time series data for the last 180 days
|
||||
- Trend analysis (increasing/decreasing/stable)
|
||||
- Peak download periods and statistics
|
||||
- Average daily downloads and growth indicators
|
||||
|
||||
Raises:
|
||||
InvalidPackageNameError: If package name is empty or invalid
|
||||
PackageNotFoundError: If package is not found on PyPI
|
||||
NetworkError: For network-related errors
|
||||
"""
|
||||
try:
|
||||
logger.info(
|
||||
f"MCP tool: Getting download trends for {package_name} "
|
||||
f"(include_mirrors: {include_mirrors})"
|
||||
)
|
||||
result = await get_package_download_trends(package_name, include_mirrors, use_cache)
|
||||
logger.info(f"Successfully retrieved download trends for package: {package_name}")
|
||||
return result
|
||||
except (InvalidPackageNameError, PackageNotFoundError, NetworkError) as e:
|
||||
logger.error(f"Error getting download trends for {package_name}: {e}")
|
||||
return {
|
||||
"error": str(e),
|
||||
"error_type": type(e).__name__,
|
||||
"package_name": package_name,
|
||||
"include_mirrors": include_mirrors,
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error getting download trends for {package_name}: {e}")
|
||||
return {
|
||||
"error": f"Unexpected error: {e}",
|
||||
"error_type": "UnexpectedError",
|
||||
"package_name": package_name,
|
||||
"include_mirrors": include_mirrors,
|
||||
}
|
||||
|
||||
|
||||
@mcp.tool()
|
||||
async def get_top_downloaded_packages(
|
||||
period: str = "month", limit: int = 20
|
||||
) -> dict[str, Any]:
|
||||
"""Get the most downloaded PyPI packages.
|
||||
|
||||
This tool retrieves a list of the most popular Python packages by download count,
|
||||
helping you discover trending and widely-used packages in the Python ecosystem.
|
||||
|
||||
Args:
|
||||
period: Time period for download ranking ('day', 'week', 'month', default: 'month')
|
||||
limit: Maximum number of packages to return (default: 20, max: 50)
|
||||
|
||||
Returns:
|
||||
Dictionary containing top packages information including:
|
||||
- Ranked list of packages with download counts
|
||||
- Package metadata and repository links
|
||||
- Period and ranking information
|
||||
- Data source and limitations
|
||||
|
||||
Note:
|
||||
Due to API limitations, this tool provides results based on known popular packages.
|
||||
For comprehensive data analysis, consider using Google BigQuery with PyPI datasets.
|
||||
"""
|
||||
try:
|
||||
# Limit the maximum number of packages to prevent excessive API calls
|
||||
actual_limit = min(limit, 50)
|
||||
|
||||
logger.info(f"MCP tool: Getting top {actual_limit} packages for period: {period}")
|
||||
result = await get_top_packages_by_downloads(period, actual_limit)
|
||||
logger.info(f"Successfully retrieved top packages list")
|
||||
return result
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting top packages: {e}")
|
||||
return {
|
||||
"error": f"Unexpected error: {e}",
|
||||
"error_type": "UnexpectedError",
|
||||
"period": period,
|
||||
"limit": limit,
|
||||
}
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.option(
|
||||
"--log-level",
|
||||
|
@ -10,6 +10,11 @@ from .compatibility_check import (
|
||||
suggest_python_version_for_packages,
|
||||
)
|
||||
from .dependency_resolver import resolve_package_dependencies
|
||||
from .download_stats import (
|
||||
get_package_download_stats,
|
||||
get_package_download_trends,
|
||||
get_top_packages_by_downloads,
|
||||
)
|
||||
from .package_downloader import download_package_with_dependencies
|
||||
from .package_query import (
|
||||
query_package_dependencies,
|
||||
@ -26,4 +31,7 @@ __all__ = [
|
||||
"suggest_python_version_for_packages",
|
||||
"resolve_package_dependencies",
|
||||
"download_package_with_dependencies",
|
||||
"get_package_download_stats",
|
||||
"get_package_download_trends",
|
||||
"get_top_packages_by_downloads",
|
||||
]
|
||||
|
322
pypi_query_mcp/tools/download_stats.py
Normal file
322
pypi_query_mcp/tools/download_stats.py
Normal file
@ -0,0 +1,322 @@
|
||||
"""PyPI package download statistics tools."""
|
||||
|
||||
import logging
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any
|
||||
|
||||
from ..core.pypi_client import PyPIClient
|
||||
from ..core.stats_client import PyPIStatsClient
|
||||
from ..core.exceptions import InvalidPackageNameError, NetworkError, PackageNotFoundError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def get_package_download_stats(
|
||||
package_name: str, period: str = "month", use_cache: bool = True
|
||||
) -> dict[str, Any]:
|
||||
"""Get download statistics for a PyPI package.
|
||||
|
||||
Args:
|
||||
package_name: Name of the package to query
|
||||
period: Time period for recent downloads ('day', 'week', 'month')
|
||||
use_cache: Whether to use cached data
|
||||
|
||||
Returns:
|
||||
Dictionary containing download statistics including:
|
||||
- Recent download counts (last day/week/month)
|
||||
- Package metadata
|
||||
- Download trends and analysis
|
||||
|
||||
Raises:
|
||||
InvalidPackageNameError: If package name is invalid
|
||||
PackageNotFoundError: If package is not found
|
||||
NetworkError: For network-related errors
|
||||
"""
|
||||
async with PyPIStatsClient() as stats_client, PyPIClient() as pypi_client:
|
||||
try:
|
||||
# Get recent download statistics
|
||||
recent_stats = await stats_client.get_recent_downloads(
|
||||
package_name, period, use_cache
|
||||
)
|
||||
|
||||
# Get basic package info for metadata
|
||||
try:
|
||||
package_info = await pypi_client.get_package_info(package_name, use_cache)
|
||||
package_metadata = {
|
||||
"name": package_info.get("info", {}).get("name", package_name),
|
||||
"version": package_info.get("info", {}).get("version", "unknown"),
|
||||
"summary": package_info.get("info", {}).get("summary", ""),
|
||||
"author": package_info.get("info", {}).get("author", ""),
|
||||
"home_page": package_info.get("info", {}).get("home_page", ""),
|
||||
"project_url": package_info.get("info", {}).get("project_url", ""),
|
||||
"project_urls": package_info.get("info", {}).get("project_urls", {}),
|
||||
}
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not fetch package metadata for {package_name}: {e}")
|
||||
package_metadata = {"name": package_name}
|
||||
|
||||
# Extract download data
|
||||
download_data = recent_stats.get("data", {})
|
||||
|
||||
# Calculate trends and analysis
|
||||
analysis = _analyze_download_stats(download_data)
|
||||
|
||||
return {
|
||||
"package": package_name,
|
||||
"metadata": package_metadata,
|
||||
"downloads": download_data,
|
||||
"analysis": analysis,
|
||||
"period": period,
|
||||
"data_source": "pypistats.org",
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting download stats for {package_name}: {e}")
|
||||
raise
|
||||
|
||||
|
||||
async def get_package_download_trends(
|
||||
package_name: str, include_mirrors: bool = False, use_cache: bool = True
|
||||
) -> dict[str, Any]:
|
||||
"""Get download trends and time series for a PyPI package.
|
||||
|
||||
Args:
|
||||
package_name: Name of the package to query
|
||||
include_mirrors: Whether to include mirror downloads
|
||||
use_cache: Whether to use cached data
|
||||
|
||||
Returns:
|
||||
Dictionary containing download trends including:
|
||||
- Time series data for the last 180 days
|
||||
- Trend analysis and statistics
|
||||
- Peak download periods
|
||||
|
||||
Raises:
|
||||
InvalidPackageNameError: If package name is invalid
|
||||
PackageNotFoundError: If package is not found
|
||||
NetworkError: For network-related errors
|
||||
"""
|
||||
async with PyPIStatsClient() as stats_client:
|
||||
try:
|
||||
# Get overall download time series
|
||||
overall_stats = await stats_client.get_overall_downloads(
|
||||
package_name, include_mirrors, use_cache
|
||||
)
|
||||
|
||||
# Process time series data
|
||||
time_series_data = overall_stats.get("data", [])
|
||||
|
||||
# Analyze trends
|
||||
trend_analysis = _analyze_download_trends(time_series_data, include_mirrors)
|
||||
|
||||
return {
|
||||
"package": package_name,
|
||||
"time_series": time_series_data,
|
||||
"trend_analysis": trend_analysis,
|
||||
"include_mirrors": include_mirrors,
|
||||
"data_source": "pypistats.org",
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting download trends for {package_name}: {e}")
|
||||
raise
|
||||
|
||||
|
||||
async def get_top_packages_by_downloads(
|
||||
period: str = "month", limit: int = 20
|
||||
) -> dict[str, Any]:
|
||||
"""Get top PyPI packages by download count.
|
||||
|
||||
Note: This function provides a simulated response based on known popular packages
|
||||
since pypistats.org doesn't provide a direct API for top packages.
|
||||
|
||||
Args:
|
||||
period: Time period ('day', 'week', 'month')
|
||||
limit: Maximum number of packages to return
|
||||
|
||||
Returns:
|
||||
Dictionary containing top packages information including:
|
||||
- List of top packages with download counts
|
||||
- Period and ranking information
|
||||
- Data source and timestamp
|
||||
"""
|
||||
# Known popular packages (this would ideally come from an API)
|
||||
popular_packages = [
|
||||
"boto3", "urllib3", "requests", "certifi", "charset-normalizer",
|
||||
"idna", "setuptools", "python-dateutil", "six", "botocore",
|
||||
"typing-extensions", "packaging", "numpy", "pip", "pyyaml",
|
||||
"cryptography", "click", "jinja2", "markupsafe", "wheel"
|
||||
]
|
||||
|
||||
async with PyPIStatsClient() as stats_client:
|
||||
try:
|
||||
top_packages = []
|
||||
|
||||
# Get download stats for popular packages
|
||||
for i, package_name in enumerate(popular_packages[:limit]):
|
||||
try:
|
||||
stats = await stats_client.get_recent_downloads(
|
||||
package_name, period, use_cache=True
|
||||
)
|
||||
|
||||
download_data = stats.get("data", {})
|
||||
download_count = _extract_download_count(download_data, period)
|
||||
|
||||
top_packages.append({
|
||||
"rank": i + 1,
|
||||
"package": package_name,
|
||||
"downloads": download_count,
|
||||
"period": period,
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not get stats for {package_name}: {e}")
|
||||
continue
|
||||
|
||||
# Sort by download count (descending)
|
||||
top_packages.sort(key=lambda x: x.get("downloads", 0), reverse=True)
|
||||
|
||||
# Update ranks after sorting
|
||||
for i, package in enumerate(top_packages):
|
||||
package["rank"] = i + 1
|
||||
|
||||
return {
|
||||
"top_packages": top_packages,
|
||||
"period": period,
|
||||
"limit": limit,
|
||||
"total_found": len(top_packages),
|
||||
"data_source": "pypistats.org",
|
||||
"note": "Based on known popular packages due to API limitations",
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting top packages: {e}")
|
||||
raise
|
||||
|
||||
|
||||
def _analyze_download_stats(download_data: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Analyze download statistics data.
|
||||
|
||||
Args:
|
||||
download_data: Raw download data from API
|
||||
|
||||
Returns:
|
||||
Dictionary containing analysis results
|
||||
"""
|
||||
analysis = {
|
||||
"total_downloads": 0,
|
||||
"periods_available": [],
|
||||
"highest_period": None,
|
||||
"growth_indicators": {},
|
||||
}
|
||||
|
||||
if not download_data:
|
||||
return analysis
|
||||
|
||||
# Extract available periods and counts
|
||||
for period, count in download_data.items():
|
||||
if period.startswith("last_") and isinstance(count, int):
|
||||
analysis["periods_available"].append(period)
|
||||
analysis["total_downloads"] += count
|
||||
|
||||
if analysis["highest_period"] is None or count > download_data.get(analysis["highest_period"], 0):
|
||||
analysis["highest_period"] = period
|
||||
|
||||
# Calculate growth indicators
|
||||
last_day = download_data.get("last_day", 0)
|
||||
last_week = download_data.get("last_week", 0)
|
||||
last_month = download_data.get("last_month", 0)
|
||||
|
||||
if last_day and last_week:
|
||||
analysis["growth_indicators"]["daily_vs_weekly"] = round(last_day * 7 / last_week, 2)
|
||||
|
||||
if last_week and last_month:
|
||||
analysis["growth_indicators"]["weekly_vs_monthly"] = round(last_week * 4 / last_month, 2)
|
||||
|
||||
return analysis
|
||||
|
||||
|
||||
def _analyze_download_trends(time_series_data: list[dict], include_mirrors: bool) -> dict[str, Any]:
|
||||
"""Analyze download trends from time series data.
|
||||
|
||||
Args:
|
||||
time_series_data: Time series download data
|
||||
include_mirrors: Whether mirrors are included
|
||||
|
||||
Returns:
|
||||
Dictionary containing trend analysis
|
||||
"""
|
||||
analysis = {
|
||||
"total_downloads": 0,
|
||||
"data_points": len(time_series_data),
|
||||
"date_range": {},
|
||||
"peak_day": None,
|
||||
"average_daily": 0,
|
||||
"trend_direction": "stable",
|
||||
}
|
||||
|
||||
if not time_series_data:
|
||||
return analysis
|
||||
|
||||
# Filter data based on mirror preference
|
||||
category_filter = "with_mirrors" if include_mirrors else "without_mirrors"
|
||||
filtered_data = [
|
||||
item for item in time_series_data
|
||||
if item.get("category") == category_filter
|
||||
]
|
||||
|
||||
if not filtered_data:
|
||||
return analysis
|
||||
|
||||
# Calculate statistics
|
||||
total_downloads = sum(item.get("downloads", 0) for item in filtered_data)
|
||||
analysis["total_downloads"] = total_downloads
|
||||
analysis["data_points"] = len(filtered_data)
|
||||
|
||||
if filtered_data:
|
||||
dates = [item.get("date") for item in filtered_data if item.get("date")]
|
||||
if dates:
|
||||
analysis["date_range"] = {
|
||||
"start": min(dates),
|
||||
"end": max(dates),
|
||||
}
|
||||
|
||||
# Find peak day
|
||||
peak_item = max(filtered_data, key=lambda x: x.get("downloads", 0))
|
||||
analysis["peak_day"] = {
|
||||
"date": peak_item.get("date"),
|
||||
"downloads": peak_item.get("downloads", 0),
|
||||
}
|
||||
|
||||
# Calculate average
|
||||
if len(filtered_data) > 0:
|
||||
analysis["average_daily"] = round(total_downloads / len(filtered_data), 2)
|
||||
|
||||
# Simple trend analysis (compare first and last week)
|
||||
if len(filtered_data) >= 14:
|
||||
first_week = sum(item.get("downloads", 0) for item in filtered_data[:7])
|
||||
last_week = sum(item.get("downloads", 0) for item in filtered_data[-7:])
|
||||
|
||||
if last_week > first_week * 1.1:
|
||||
analysis["trend_direction"] = "increasing"
|
||||
elif last_week < first_week * 0.9:
|
||||
analysis["trend_direction"] = "decreasing"
|
||||
|
||||
return analysis
|
||||
|
||||
|
||||
def _extract_download_count(download_data: dict[str, Any], period: str) -> int:
|
||||
"""Extract download count for a specific period.
|
||||
|
||||
Args:
|
||||
download_data: Download data from API
|
||||
period: Period to extract ('day', 'week', 'month')
|
||||
|
||||
Returns:
|
||||
Download count for the specified period
|
||||
"""
|
||||
period_key = f"last_{period}"
|
||||
return download_data.get(period_key, 0)
|
199
tests/test_download_stats.py
Normal file
199
tests/test_download_stats.py
Normal file
@ -0,0 +1,199 @@
|
||||
"""Tests for download statistics functionality."""
|
||||
|
||||
import pytest
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
from pypi_query_mcp.tools.download_stats import (
|
||||
get_package_download_stats,
|
||||
get_package_download_trends,
|
||||
get_top_packages_by_downloads,
|
||||
_analyze_download_stats,
|
||||
_analyze_download_trends,
|
||||
_extract_download_count,
|
||||
)
|
||||
from pypi_query_mcp.core.exceptions import PackageNotFoundError, InvalidPackageNameError
|
||||
|
||||
|
||||
class TestDownloadStats:
|
||||
"""Test download statistics functionality."""
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_package_download_stats_success(self):
|
||||
"""Test successful package download stats retrieval."""
|
||||
mock_stats_data = {
|
||||
"data": {
|
||||
"last_day": 1000,
|
||||
"last_week": 7000,
|
||||
"last_month": 30000,
|
||||
},
|
||||
"package": "test-package",
|
||||
"type": "recent_downloads",
|
||||
}
|
||||
|
||||
mock_package_info = {
|
||||
"info": {
|
||||
"name": "test-package",
|
||||
"version": "1.0.0",
|
||||
"summary": "A test package",
|
||||
"author": "Test Author",
|
||||
"home_page": "https://example.com",
|
||||
"project_urls": {"Repository": "https://github.com/test/test-package"},
|
||||
}
|
||||
}
|
||||
|
||||
with patch("pypi_query_mcp.tools.download_stats.PyPIStatsClient") as mock_stats_client, \
|
||||
patch("pypi_query_mcp.tools.download_stats.PyPIClient") as mock_pypi_client:
|
||||
|
||||
# Setup mocks
|
||||
mock_stats_instance = AsyncMock()
|
||||
mock_stats_instance.get_recent_downloads.return_value = mock_stats_data
|
||||
mock_stats_client.return_value.__aenter__.return_value = mock_stats_instance
|
||||
|
||||
mock_pypi_instance = AsyncMock()
|
||||
mock_pypi_instance.get_package_info.return_value = mock_package_info
|
||||
mock_pypi_client.return_value.__aenter__.return_value = mock_pypi_instance
|
||||
|
||||
# Test the function
|
||||
result = await get_package_download_stats("test-package", "month")
|
||||
|
||||
# Assertions
|
||||
assert result["package"] == "test-package"
|
||||
assert result["downloads"]["last_month"] == 30000
|
||||
assert result["metadata"]["name"] == "test-package"
|
||||
assert result["metadata"]["version"] == "1.0.0"
|
||||
assert result["period"] == "month"
|
||||
assert "analysis" in result
|
||||
assert "timestamp" in result
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_package_download_stats_package_not_found(self):
|
||||
"""Test package download stats with non-existent package."""
|
||||
with patch("pypi_query_mcp.tools.download_stats.PyPIStatsClient") as mock_stats_client:
|
||||
mock_stats_instance = AsyncMock()
|
||||
mock_stats_instance.get_recent_downloads.side_effect = PackageNotFoundError("nonexistent")
|
||||
mock_stats_client.return_value.__aenter__.return_value = mock_stats_instance
|
||||
|
||||
with pytest.raises(PackageNotFoundError):
|
||||
await get_package_download_stats("nonexistent", "month")
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_package_download_trends_success(self):
|
||||
"""Test successful package download trends retrieval."""
|
||||
mock_trends_data = {
|
||||
"data": [
|
||||
{"category": "without_mirrors", "date": "2024-01-01", "downloads": 1000},
|
||||
{"category": "without_mirrors", "date": "2024-01-02", "downloads": 1200},
|
||||
{"category": "with_mirrors", "date": "2024-01-01", "downloads": 1100},
|
||||
{"category": "with_mirrors", "date": "2024-01-02", "downloads": 1300},
|
||||
],
|
||||
"package": "test-package",
|
||||
"type": "overall_downloads",
|
||||
}
|
||||
|
||||
with patch("pypi_query_mcp.tools.download_stats.PyPIStatsClient") as mock_stats_client:
|
||||
mock_stats_instance = AsyncMock()
|
||||
mock_stats_instance.get_overall_downloads.return_value = mock_trends_data
|
||||
mock_stats_client.return_value.__aenter__.return_value = mock_stats_instance
|
||||
|
||||
result = await get_package_download_trends("test-package", include_mirrors=False)
|
||||
|
||||
assert result["package"] == "test-package"
|
||||
assert result["include_mirrors"] is False
|
||||
assert len(result["time_series"]) == 4
|
||||
assert "trend_analysis" in result
|
||||
assert result["trend_analysis"]["data_points"] == 2 # Only without_mirrors data
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_top_packages_by_downloads_success(self):
|
||||
"""Test successful top packages retrieval."""
|
||||
mock_stats_data = {
|
||||
"data": {
|
||||
"last_month": 50000000,
|
||||
},
|
||||
"package": "boto3",
|
||||
"type": "recent_downloads",
|
||||
}
|
||||
|
||||
with patch("pypi_query_mcp.tools.download_stats.PyPIStatsClient") as mock_stats_client:
|
||||
mock_stats_instance = AsyncMock()
|
||||
mock_stats_instance.get_recent_downloads.return_value = mock_stats_data
|
||||
mock_stats_client.return_value.__aenter__.return_value = mock_stats_instance
|
||||
|
||||
result = await get_top_packages_by_downloads("month", 5)
|
||||
|
||||
assert "top_packages" in result
|
||||
assert result["period"] == "month"
|
||||
assert result["limit"] == 5
|
||||
assert len(result["top_packages"]) <= 5
|
||||
assert all("rank" in pkg for pkg in result["top_packages"])
|
||||
assert all("package" in pkg for pkg in result["top_packages"])
|
||||
assert all("downloads" in pkg for pkg in result["top_packages"])
|
||||
|
||||
def test_analyze_download_stats(self):
|
||||
"""Test download statistics analysis."""
|
||||
download_data = {
|
||||
"last_day": 1000,
|
||||
"last_week": 7000,
|
||||
"last_month": 30000,
|
||||
}
|
||||
|
||||
analysis = _analyze_download_stats(download_data)
|
||||
|
||||
assert analysis["total_downloads"] == 38000
|
||||
assert "last_day" in analysis["periods_available"]
|
||||
assert "last_week" in analysis["periods_available"]
|
||||
assert "last_month" in analysis["periods_available"]
|
||||
assert analysis["highest_period"] == "last_month"
|
||||
assert "growth_indicators" in analysis
|
||||
|
||||
def test_analyze_download_stats_empty(self):
|
||||
"""Test download statistics analysis with empty data."""
|
||||
analysis = _analyze_download_stats({})
|
||||
|
||||
assert analysis["total_downloads"] == 0
|
||||
assert analysis["periods_available"] == []
|
||||
assert analysis["highest_period"] is None
|
||||
assert analysis["growth_indicators"] == {}
|
||||
|
||||
def test_analyze_download_trends(self):
|
||||
"""Test download trends analysis."""
|
||||
time_series_data = [
|
||||
{"category": "without_mirrors", "date": "2024-01-01", "downloads": 1000},
|
||||
{"category": "without_mirrors", "date": "2024-01-02", "downloads": 1200},
|
||||
{"category": "without_mirrors", "date": "2024-01-03", "downloads": 1100},
|
||||
]
|
||||
|
||||
analysis = _analyze_download_trends(time_series_data, include_mirrors=False)
|
||||
|
||||
assert analysis["total_downloads"] == 3300
|
||||
assert analysis["data_points"] == 3
|
||||
assert analysis["average_daily"] == 1100.0
|
||||
assert analysis["peak_day"]["downloads"] == 1200
|
||||
assert analysis["peak_day"]["date"] == "2024-01-02"
|
||||
assert "date_range" in analysis
|
||||
|
||||
def test_analyze_download_trends_empty(self):
|
||||
"""Test download trends analysis with empty data."""
|
||||
analysis = _analyze_download_trends([], include_mirrors=False)
|
||||
|
||||
assert analysis["total_downloads"] == 0
|
||||
assert analysis["data_points"] == 0
|
||||
assert analysis["average_daily"] == 0
|
||||
assert analysis["peak_day"] is None
|
||||
|
||||
def test_extract_download_count(self):
|
||||
"""Test download count extraction."""
|
||||
download_data = {
|
||||
"last_day": 1000,
|
||||
"last_week": 7000,
|
||||
"last_month": 30000,
|
||||
}
|
||||
|
||||
assert _extract_download_count(download_data, "day") == 1000
|
||||
assert _extract_download_count(download_data, "week") == 7000
|
||||
assert _extract_download_count(download_data, "month") == 30000
|
||||
assert _extract_download_count(download_data, "year") == 0 # Not present
|
||||
|
||||
def test_extract_download_count_empty(self):
|
||||
"""Test download count extraction with empty data."""
|
||||
assert _extract_download_count({}, "month") == 0
|
Loading…
x
Reference in New Issue
Block a user