# Advanced Video Features Roadmap Building on the existing production-grade 360° video processing and multi-pass encoding foundation. ## 🎯 Phase 1: AI-Powered Video Analysis ### Content Intelligence Engine **Leverage existing metadata extraction + add ML analysis** ```python # New: src/video_processor/ai/content_analyzer.py class VideoContentAnalyzer: """AI-powered video content analysis and scene detection.""" async def analyze_content(self, video_path: Path) -> ContentAnalysis: """Comprehensive video content analysis.""" return ContentAnalysis( scenes=await self._detect_scenes(video_path), objects=await self._detect_objects(video_path), faces=await self._detect_faces(video_path), text=await self._extract_text(video_path), audio_features=await self._analyze_audio(video_path), quality_metrics=await self._assess_quality(video_path), ) ``` **Integration with Existing 360° Pipeline** - Extend `Video360Detection` with AI confidence scoring - Smart thumbnail selection based on scene importance - Automatic 360° viewing angle optimization ### Smart Scene Detection **Build on existing sprite generation** ```python # Enhanced: src/video_processor/core/thumbnails.py class SmartThumbnailGenerator(ThumbnailGenerator): """AI-enhanced thumbnail generation with scene detection.""" async def generate_smart_thumbnails( self, video_path: Path, scene_analysis: SceneAnalysis ) -> list[Path]: """Generate thumbnails at optimal scene boundaries.""" # Use existing thumbnail infrastructure + AI scene detection optimal_timestamps = scene_analysis.get_key_moments() return await self.generate_thumbnails_at_timestamps(optimal_timestamps) ``` ## 🎯 Phase 2: Next-Generation Codecs ### AV1 Support **Extend existing multi-pass encoding architecture** ```python # Enhanced: src/video_processor/core/encoders.py class VideoEncoder: def _encode_av1(self, input_path: Path, output_dir: Path, video_id: str) -> Path: """Encode video to AV1 using three-pass encoding.""" # Leverage existing two-pass infrastructure # Add AV1-specific optimizations for 360° content quality = self._quality_presets[self.config.quality_preset] av1_multiplier = self._get_av1_bitrate_multiplier() return self._multi_pass_encode( codec="libaom-av1", passes=3, # AV1 benefits from three-pass quality_preset=quality, bitrate_multiplier=av1_multiplier ) ``` ### HDR Support Integration **Build on existing quality preset system** ```python # New: src/video_processor/core/hdr_processor.py class HDRProcessor: """HDR video processing with existing quality pipeline.""" def process_hdr_content( self, video_path: Path, hdr_metadata: HDRMetadata ) -> ProcessedVideo: """Process HDR content using existing encoding pipeline.""" # Extend existing quality presets with HDR parameters enhanced_presets = self._enhance_presets_for_hdr( self.config.quality_preset, hdr_metadata ) return self._encode_with_hdr(enhanced_presets) ``` ## 🎯 Phase 3: Streaming & Real-Time Processing ### Adaptive Streaming **Leverage existing multi-format output** ```python # New: src/video_processor/streaming/adaptive.py class AdaptiveStreamProcessor: """Generate adaptive streaming formats from existing encodings.""" async def create_adaptive_stream( self, video_path: Path, existing_outputs: list[Path] ) -> StreamingPackage: """Create HLS/DASH streams from existing MP4/WebM outputs.""" # Use existing encoded files as base # Generate multiple bitrate ladders return StreamingPackage( hls_playlist=await self._create_hls(existing_outputs), dash_manifest=await self._create_dash(existing_outputs), thumbnail_track=await self._create_thumbnail_track(), ) ``` ### Live Stream Integration **Extend existing Procrastinate task system** ```python # Enhanced: src/video_processor/tasks/streaming_tasks.py @app.task(queue="streaming") async def process_live_stream_segment( segment_path: Path, stream_config: StreamConfig ) -> SegmentResult: """Process live stream segments using existing pipeline.""" # Leverage existing encoding infrastructure # Add real-time optimizations processor = VideoProcessor(stream_config.to_processor_config()) return await processor.process_segment_realtime(segment_path) ``` ## 🎯 Phase 4: Advanced 360° Enhancements ### Multi-Modal 360° Processing **Build on existing sophisticated 360° pipeline** ```python # Enhanced: src/video_processor/utils/video_360.py class Advanced360Processor(Video360Utils): """Next-generation 360° processing capabilities.""" async def generate_interactive_projections( self, video_path: Path, viewing_preferences: ViewingProfile ) -> Interactive360Package: """Generate multiple projection formats for interactive viewing.""" # Leverage existing projection math # Add interactive navigation data return Interactive360Package( equirectangular=await self._process_equirectangular(), cubemap=await self._generate_cubemap_faces(), viewport_optimization=await self._optimize_for_vr_headsets(), navigation_mesh=await self._create_navigation_data(), ) ``` ### Spatial Audio Integration **Extend existing audio processing** ```python # New: src/video_processor/audio/spatial.py class SpatialAudioProcessor: """360° spatial audio processing.""" async def process_ambisonic_audio( self, video_path: Path, audio_format: AmbisonicFormat ) -> SpatialAudioResult: """Process spatial audio using existing audio pipeline.""" # Integrate with existing FFmpeg audio processing # Add ambisonic encoding support return await self._encode_spatial_audio(audio_format) ``` ## 🎯 Implementation Strategy ### Phase 1 Priority: AI Content Analysis **Highest ROI - builds directly on existing infrastructure** 1. **Scene Detection API**: Use OpenCV (already dependency) + ML models 2. **Smart Thumbnail Selection**: Enhance existing thumbnail generation 3. **360° AI Integration**: Extend existing 360° detection with confidence scoring ### Technical Approach ```python # Integration point with existing system class EnhancedVideoProcessor(VideoProcessor): """AI-enhanced video processor building on existing foundation.""" def __init__(self, config: ProcessorConfig, enable_ai: bool = True): super().__init__(config) if enable_ai: self.content_analyzer = VideoContentAnalyzer() self.smart_thumbnail_gen = SmartThumbnailGenerator(config) async def process_with_ai(self, video_path: Path) -> EnhancedProcessingResult: """Enhanced processing with AI analysis.""" # Use existing processing pipeline standard_result = await super().process_video(video_path) # Add AI enhancements if self.content_analyzer: ai_analysis = await self.content_analyzer.analyze_content(video_path) enhanced_thumbnails = await self.smart_thumbnail_gen.generate_smart_thumbnails( video_path, ai_analysis.scenes ) return EnhancedProcessingResult( standard_output=standard_result, ai_analysis=ai_analysis, smart_thumbnails=enhanced_thumbnails, ) ``` ### Development Benefits - **Zero Breaking Changes**: All enhancements extend existing APIs - **Optional Features**: AI features are opt-in, core pipeline unchanged - **Dependency Isolation**: New features use same optional dependency pattern - **Testing Integration**: Leverage existing comprehensive test framework ### Next Steps 1. **Start with Scene Detection**: Implement basic scene boundary detection using OpenCV 2. **Integrate with Existing Thumbnails**: Enhance thumbnail selection with scene analysis 3. **Add AI Configuration**: Extend ProcessorConfig with AI options 4. **Comprehensive Testing**: Use existing test framework for AI features This roadmap leverages the excellent existing foundation while adding cutting-edge capabilities that provide significant competitive advantages.