video-processor/examples/ai_enhanced_processing.py
Ryan Malloy bcd37ba55f Implement comprehensive 360° video processing system (Phase 4)
This milestone completes the video processor with full 360° video support:

## New Features
- Complete 360° video analysis and processing pipeline
- Multi-projection support (equirectangular, cubemap, EAC, stereographic, fisheye)
- Viewport extraction and animated viewport tracking
- Spatial audio processing (ambisonic, binaural, object-based)
- 360° adaptive streaming with tiled encoding
- AI-enhanced 360° content analysis integration
- Comprehensive test infrastructure with synthetic video generation

## Core Components
- Video360Processor: Complete 360° analysis and processing
- ProjectionConverter: Batch conversion between projections
- SpatialAudioProcessor: Advanced spatial audio handling
- Video360StreamProcessor: Viewport-adaptive streaming
- Comprehensive data models and validation

## Test Infrastructure
- 360° video downloader with curated test sources
- Synthetic 360° video generator for CI/CD
- Integration tests covering full processing pipeline
- Performance benchmarks for parallel processing

## Documentation & Examples
- Complete 360° processing examples and workflows
- Comprehensive development summary documentation
- Integration guides for all four processing phases

This completes the roadmap: AI analysis, advanced codecs, streaming, and 360° video processing.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-06 08:42:44 -06:00

259 lines
8.8 KiB
Python

#!/usr/bin/env python3
"""
AI-Enhanced Video Processing Example
Demonstrates the new AI-powered content analysis and smart processing features
built on top of the existing comprehensive video processing infrastructure.
"""
import asyncio
import logging
from pathlib import Path
from video_processor import (
HAS_AI_SUPPORT,
EnhancedVideoProcessor,
ProcessorConfig,
VideoContentAnalyzer,
)
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
async def analyze_content_example(video_path: Path):
"""Demonstrate AI content analysis without processing."""
logger.info("=== AI Content Analysis Example ===")
if not HAS_AI_SUPPORT:
logger.error(
"AI support not available. Install with: uv add 'video-processor[ai-analysis]'"
)
return
analyzer = VideoContentAnalyzer()
# Check available capabilities
missing_deps = analyzer.get_missing_dependencies()
if missing_deps:
logger.warning(f"Some AI features limited. Missing: {missing_deps}")
# Analyze video content
analysis = await analyzer.analyze_content(video_path)
if analysis:
print("\n📊 Content Analysis Results:")
print(f" Duration: {analysis.duration:.1f} seconds")
print(f" Resolution: {analysis.resolution[0]}x{analysis.resolution[1]}")
print(f" 360° Video: {analysis.is_360_video}")
print(f" Has Motion: {analysis.has_motion}")
print(f" Motion Intensity: {analysis.motion_intensity:.2f}")
print("\n🎬 Scene Analysis:")
print(f" Scene Count: {analysis.scenes.scene_count}")
print(f" Average Scene Length: {analysis.scenes.average_scene_length:.1f}s")
print(
f" Scene Boundaries: {[f'{b:.1f}s' for b in analysis.scenes.scene_boundaries[:5]]}"
)
print("\n📈 Quality Metrics:")
print(f" Overall Quality: {analysis.quality_metrics.overall_quality:.2f}")
print(f" Sharpness: {analysis.quality_metrics.sharpness_score:.2f}")
print(f" Brightness: {analysis.quality_metrics.brightness_score:.2f}")
print(f" Contrast: {analysis.quality_metrics.contrast_score:.2f}")
print(f" Noise Level: {analysis.quality_metrics.noise_level:.2f}")
print("\n🖼️ Smart Thumbnail Recommendations:")
for i, timestamp in enumerate(analysis.recommended_thumbnails):
print(f" Thumbnail {i + 1}: {timestamp:.1f}s")
return analysis
async def enhanced_processing_example(video_path: Path, output_dir: Path):
"""Demonstrate AI-enhanced video processing."""
logger.info("=== AI-Enhanced Processing Example ===")
if not HAS_AI_SUPPORT:
logger.error(
"AI support not available. Install with: uv add 'video-processor[ai-analysis]'"
)
return
# Create configuration
config = ProcessorConfig(
base_path=output_dir,
output_formats=["mp4", "webm"],
quality_preset="medium",
generate_sprites=True,
thumbnail_timestamps=[5], # Will be optimized by AI
)
# Create enhanced processor
processor = EnhancedVideoProcessor(config, enable_ai=True)
# Show AI capabilities
capabilities = processor.get_ai_capabilities()
print("\n🤖 AI Capabilities:")
for capability, available in capabilities.items():
status = "" if available else ""
print(f" {status} {capability.replace('_', ' ').title()}")
missing_deps = processor.get_missing_ai_dependencies()
if missing_deps:
print(f"\n⚠️ For full AI capabilities, install: {', '.join(missing_deps)}")
# Process video with AI enhancements
logger.info("Starting AI-enhanced video processing...")
result = await processor.process_video_enhanced(
video_path, enable_smart_thumbnails=True
)
print("\n✨ Enhanced Processing Results:")
print(f" Video ID: {result.video_id}")
print(f" Output Directory: {result.output_path}")
print(f" Encoded Formats: {list(result.encoded_files.keys())}")
print(f" Standard Thumbnails: {len(result.thumbnails)}")
print(f" Smart Thumbnails: {len(result.smart_thumbnails)}")
if result.sprite_file:
print(f" Sprite Sheet: {result.sprite_file.name}")
if result.thumbnails_360:
print(f" 360° Thumbnails: {list(result.thumbnails_360.keys())}")
# Show AI analysis results
if result.content_analysis:
analysis = result.content_analysis
print("\n🎯 AI-Driven Optimizations:")
if analysis.is_360_video:
print(" ✓ Detected 360° video - enabled specialized processing")
if analysis.motion_intensity > 0.7:
print(" ✓ High motion detected - optimized sprite generation")
elif analysis.motion_intensity < 0.3:
print(" ✓ Low motion detected - reduced sprite density for efficiency")
quality = analysis.quality_metrics.overall_quality
if quality > 0.8:
print(" ✓ High quality source - preserved maximum detail")
elif quality < 0.4:
print(" ✓ Lower quality source - optimized for efficiency")
return result
def compare_processing_modes_example(video_path: Path, output_dir: Path):
"""Compare standard vs AI-enhanced processing."""
logger.info("=== Processing Mode Comparison ===")
if not HAS_AI_SUPPORT:
logger.error("AI support not available for comparison.")
return
config = ProcessorConfig(
base_path=output_dir,
output_formats=["mp4"],
quality_preset="medium",
)
# Standard processor
from video_processor import VideoProcessor
standard_processor = VideoProcessor(config)
# Enhanced processor
enhanced_processor = EnhancedVideoProcessor(config, enable_ai=True)
print("\n📊 Processing Capabilities Comparison:")
print(" Standard Processor:")
print(" ✓ Multi-format encoding (MP4, WebM, OGV)")
print(" ✓ Quality presets (low/medium/high/ultra)")
print(" ✓ Thumbnail generation")
print(" ✓ Sprite sheet creation")
print(" ✓ 360° video processing (if enabled)")
print("\n AI-Enhanced Processor (all above plus):")
print(" ✨ Intelligent content analysis")
print(" ✨ Scene-based thumbnail selection")
print(" ✨ Quality-aware processing optimization")
print(" ✨ Motion-adaptive sprite generation")
print(" ✨ Automatic 360° detection")
print(" ✨ Smart configuration optimization")
async def main():
"""Main demonstration function."""
# Use a test video (you can replace with your own)
video_path = Path("tests/fixtures/videos/big_buck_bunny_720p_1mb.mp4")
output_dir = Path("/tmp/ai_demo_output")
# Create output directory
output_dir.mkdir(exist_ok=True)
print("🎬 AI-Enhanced Video Processing Demonstration")
print("=" * 50)
if not video_path.exists():
print(f"⚠️ Test video not found: {video_path}")
print(
" Please provide a video file path or use the test suite to generate fixtures."
)
print(
" Example: python -m video_processor.examples.ai_enhanced_processing /path/to/your/video.mp4"
)
return
try:
# 1. Content analysis example
analysis = await analyze_content_example(video_path)
# 2. Enhanced processing example
if HAS_AI_SUPPORT:
result = await enhanced_processing_example(video_path, output_dir)
# 3. Comparison example
compare_processing_modes_example(video_path, output_dir)
print(f"\n🎉 Demonstration complete! Check outputs in: {output_dir}")
except Exception as e:
logger.error(f"Demonstration failed: {e}")
raise
if __name__ == "__main__":
import sys
# Allow custom video path
if len(sys.argv) > 1:
custom_video_path = Path(sys.argv[1])
if custom_video_path.exists():
# Override default path
main_module = sys.modules[__name__]
async def custom_main():
output_dir = Path("/tmp/ai_demo_output")
output_dir.mkdir(exist_ok=True)
print("🎬 AI-Enhanced Video Processing Demonstration")
print("=" * 50)
print(f"Using custom video: {custom_video_path}")
analysis = await analyze_content_example(custom_video_path)
if HAS_AI_SUPPORT:
result = await enhanced_processing_example(
custom_video_path, output_dir
)
compare_processing_modes_example(custom_video_path, output_dir)
print(f"\n🎉 Demonstration complete! Check outputs in: {output_dir}")
main_module.main = custom_main
asyncio.run(main())