video-processor/test_framework_demo.py
Ryan Malloy 343f989714 🎬 Complete project reorganization and video-themed testing framework
MAJOR ENHANCEMENTS:
• Professional documentation structure in docs/ with symlinked examples
• Comprehensive test organization under tests/ directory
• Advanced video-themed testing framework with HTML dashboards
• Enhanced Makefile with categorized test commands

DOCUMENTATION RESTRUCTURE:
• docs/user-guide/ - User-facing guides and features
• docs/development/ - Technical documentation
• docs/migration/ - Upgrade instructions
• docs/reference/ - API references and roadmaps
• examples/ - Practical usage examples (symlinked to docs/examples)

TEST ORGANIZATION:
• tests/unit/ - Unit tests with enhanced reporting
• tests/integration/ - End-to-end tests
• tests/docker/ - Docker integration configurations
• tests/framework/ - Custom testing framework components
• tests/development-archives/ - Historical test data

TESTING FRAMEWORK FEATURES:
• Video-themed HTML dashboards with cinema aesthetics
• Quality scoring system (0-10 scale with letter grades)
• Test categorization (unit, integration, 360°, AI, streaming, performance)
• Parallel execution with configurable workers
• Performance metrics and trend analysis
• Interactive filtering and expandable test details

INTEGRATION IMPROVEMENTS:
• Updated docker-compose paths for new structure
• Enhanced Makefile with video processing test commands
• Backward compatibility with existing tests
• CI/CD ready with JSON reports and exit codes
• Professional quality assurance workflows

TECHNICAL ACHIEVEMENTS:
• 274 tests organized with smart categorization
• 94.8% unit test success rate with enhanced reporting
• Video processing domain-specific fixtures and assertions
• Beautiful dark terminal aesthetic with video processing colors
• Production-ready framework with enterprise-grade features

Commands: make test-smoke, make test-unit, make test-360, make test-all
Reports: Video-themed HTML dashboards in test-reports/
Quality: Comprehensive scoring and performance tracking
2025-09-21 23:41:16 -06:00

259 lines
8.7 KiB
Python

#!/usr/bin/env python3
"""Demo showing the video processing testing framework in action."""
import pytest
import tempfile
import shutil
from pathlib import Path
# Import framework components directly
from tests.framework.config import TestingConfig
from tests.framework.quality import QualityMetricsCalculator
from tests.framework.reporters import HTMLReporter, JSONReporter, TestResult
@pytest.mark.smoke
def test_framework_smoke_demo():
"""Demo smoke test showing framework capabilities."""
# Create quality tracker
tracker = QualityMetricsCalculator("framework_smoke_demo")
# Record some test activity
tracker.record_assertion(True, "Framework initialization successful")
tracker.record_assertion(True, "Configuration loaded correctly")
tracker.record_assertion(True, "Quality tracker working")
# Test configuration
config = TestingConfig()
assert config.project_name == "Video Processor"
assert config.parallel_workers >= 1
# Simulate video processing
tracker.record_video_processing(
input_size_mb=50.0,
duration=2.5,
output_quality=8.7
)
print("✅ Framework smoke test completed successfully")
@pytest.mark.unit
def test_enhanced_configuration():
"""Test enhanced configuration capabilities."""
tracker = QualityMetricsCalculator("enhanced_configuration")
# Create configuration from environment
config = TestingConfig.from_env()
# Test configuration properties
tracker.record_assertion(config.parallel_workers > 0, "Parallel workers configured")
tracker.record_assertion(config.timeout_seconds > 0, "Timeout configured")
tracker.record_assertion(config.reports_dir.exists(), "Reports directory exists")
# Test pytest args generation
args = config.get_pytest_args()
tracker.record_assertion(len(args) > 0, "Pytest args generated")
# Test coverage args
coverage_args = config.get_coverage_args()
tracker.record_assertion("--cov=src/" in coverage_args, "Coverage configured for src/")
print("✅ Enhanced configuration test completed")
@pytest.mark.unit
def test_quality_scoring():
"""Test quality metrics and scoring system."""
tracker = QualityMetricsCalculator("quality_scoring_test")
# Record comprehensive test data
for i in range(10):
tracker.record_assertion(True, f"Test assertion {i+1}")
# Record one expected failure
tracker.record_assertion(False, "Expected edge case failure for testing")
# Record a warning
tracker.record_warning("Non-critical issue detected during testing")
# Record multiple video processing operations
for i in range(3):
tracker.record_video_processing(
input_size_mb=40.0 + i * 10,
duration=1.5 + i * 0.5,
output_quality=8.0 + i * 0.3
)
# Finalize and check metrics
metrics = tracker.finalize()
# Validate metrics
assert metrics.test_name == "quality_scoring_test"
assert metrics.assertions_total == 11
assert metrics.assertions_passed == 10
assert metrics.videos_processed == 3
assert metrics.overall_score > 0
print(f"✅ Quality scoring test completed - Overall Score: {metrics.overall_score:.1f}/10")
print(f" Grade: {metrics.grade}")
@pytest.mark.integration
def test_html_report_generation():
"""Test HTML report generation with video theme."""
config = TestingConfig()
reporter = HTMLReporter(config)
# Create mock test results with quality metrics
from tests.framework.quality import TestQualityMetrics
from datetime import datetime
# Create various test scenarios
test_scenarios = [
{
"name": "test_video_encoding_h264",
"status": "passed",
"duration": 2.5,
"category": "Unit",
"quality": TestQualityMetrics(
test_name="test_video_encoding_h264",
timestamp=datetime.now(),
duration=2.5,
success=True,
functional_score=9.0,
performance_score=8.5,
reliability_score=9.2,
maintainability_score=8.8,
assertions_passed=15,
assertions_total=15,
videos_processed=1,
encoding_fps=12.0
)
},
{
"name": "test_360_video_processing",
"status": "passed",
"duration": 15.2,
"category": "360°",
"quality": TestQualityMetrics(
test_name="test_360_video_processing",
timestamp=datetime.now(),
duration=15.2,
success=True,
functional_score=8.7,
performance_score=7.5,
reliability_score=8.9,
maintainability_score=8.2,
assertions_passed=22,
assertions_total=25,
videos_processed=1,
encoding_fps=3.2
)
},
{
"name": "test_streaming_integration",
"status": "failed",
"duration": 5.8,
"category": "Integration",
"error_message": "Streaming endpoint connection timeout after 30s",
"quality": TestQualityMetrics(
test_name="test_streaming_integration",
timestamp=datetime.now(),
duration=5.8,
success=False,
functional_score=4.0,
performance_score=6.0,
reliability_score=3.5,
maintainability_score=7.0,
assertions_passed=8,
assertions_total=12,
error_count=1
)
},
{
"name": "test_ai_analysis_smoke",
"status": "skipped",
"duration": 0.1,
"category": "AI",
"error_message": "AI analysis dependencies not available in CI environment"
}
]
# Add test results to reporter
for scenario in test_scenarios:
result = TestResult(
name=scenario["name"],
status=scenario["status"],
duration=scenario["duration"],
category=scenario["category"],
error_message=scenario.get("error_message"),
quality_metrics=scenario.get("quality")
)
reporter.add_test_result(result)
# Generate HTML report
html_content = reporter.generate_report()
# Validate report content
assert "Video Processor Test Report" in html_content
assert "test_video_encoding_h264" in html_content
assert "test_360_video_processing" in html_content
assert "test_streaming_integration" in html_content
assert "test_ai_analysis_smoke" in html_content
# Check for video theme elements
assert "--bg-primary: #0d1117" in html_content # Dark theme
assert "video-accent" in html_content # Video accent color
assert "Quality Metrics Overview" in html_content
assert "Test Analytics & Trends" in html_content
# Save report to temp file for manual inspection
temp_dir = Path(tempfile.mkdtemp())
report_path = temp_dir / "demo_report.html"
with open(report_path, "w") as f:
f.write(html_content)
print(f"✅ HTML report generation test completed")
print(f" Report saved to: {report_path}")
# Cleanup
shutil.rmtree(temp_dir, ignore_errors=True)
@pytest.mark.performance
def test_performance_simulation():
"""Simulate performance testing with benchmarks."""
tracker = QualityMetricsCalculator("performance_simulation")
# Simulate different encoding scenarios
encoding_tests = [
{"codec": "h264", "resolution": "720p", "target_fps": 15.0, "actual_fps": 18.2},
{"codec": "h264", "resolution": "1080p", "target_fps": 8.0, "actual_fps": 9.5},
{"codec": "h265", "resolution": "720p", "target_fps": 6.0, "actual_fps": 7.1},
{"codec": "webm", "resolution": "1080p", "target_fps": 6.0, "actual_fps": 5.8},
]
for test in encoding_tests:
# Check if performance meets benchmark
meets_benchmark = test["actual_fps"] >= test["target_fps"]
tracker.record_assertion(
meets_benchmark,
f"{test['codec']} {test['resolution']} encoding performance"
)
# Record video processing metrics
tracker.record_video_processing(
input_size_mb=60.0 if "1080p" in test["resolution"] else 30.0,
duration=2.0,
output_quality=8.0 + (test["actual_fps"] / test["target_fps"])
)
metrics = tracker.finalize()
print(f"✅ Performance simulation completed - Score: {metrics.overall_score:.1f}/10")
if __name__ == "__main__":
# Run tests using pytest
import sys
sys.exit(pytest.main([__file__, "-v", "--tb=short"]))