
Using WebRTC with
Django

Channels
HTMX

&
Coturn

Ken Whitesell – DjangoCon US 2024

 2

Demo site

https://demo.kww.us/
● There is no separate user registration

form
● Entering your first name and real name

creates a user.
● No password is necessary.

● The only requirement is that the first name
matches the first name entered when the
real name is entered

 3

History

● WebRTC first released in 2011
● Standardized in 2018
● Adopted as W3C recommended

standard in 2021
● Still tough to find current and

accurate information

https://demo.kww.us/

 4

History

● WebRTC first released in 2011
● Standardized in 2018
● Adopted as W3C recommended

standard in 2021
● Still tough to find current and

accurate information
● If you have interest in this topic,

buy this book!

 5

Demo site & Code – Final time

https://demo.kww.us/

https://github.com/KenWhitesell/rtc_demo.git

 6

Overall architecture

 7

The Parts

Django - https://docs.djangoproject.com/en/5.1/
● Serving web page and JavaScript, Provides authentication

Channels - https://github.com/django/channels
● Websocket for communications signaling

HTMX - https://htmx.org/
● Websocket in browser, HTML injection

Coturn - https://github.com/coturn/coturn
● IP NAT traversal (Using STUN for address identification)

● Connection hub when direct connection isn’t possible (TURN)

 8

The home page

● HTMX is loaded
● Websocket extension is loaded
● Custom transformResponse extension is loaded – static/js/tr.js

● Assumes data coming through websocket is JSON
● Looks for specific keys

● “remove” – Removes an html element
● “html” – HTML to be injected into the page as a normal htmx message

● All other keys assumed to be for a “registered app”
● Provides facilities to multiplex the websocket usage

 9

Multiplexing a websocket

 10

Websocket JSON - transformResponse

{

 ‘<app name 1>’: {

 ‘type’: ‘<event 1>’,

 ‘<key 1>’: ‘<data 1>’

 },

 ‘<app name 2>’: {

 ‘type’: ‘<event b>’

 ‘<key 1>’: ‘<data 1>’

 },

 ‘html’: ‘<div id=”new-div”>This is text being injected into the page</div>’

}

 11

WebRTC Events

● RTC events received from consumer
● connect – save the channel_name
● other – open connection to one peer
● others – open connections with multiple peers
● signal – receive initial connection info from peers via Channels
● disconnected – disconnect from peer

 12

tr.js
transformResponse : function(text, xhr, elt) {
 const data = JSON.parse(text);
 for ([app, message] of Object.entries(data)) {
 var event = message.type;
 apps._forward(app, event, message)
 }

'_forward': function(app, name, message) {
 if (apps[app] && apps[app].has(name)) {
 for (target of apps[app].get(name)) {
 target(message);
 }
 }
}

 13

Client.js – Registering event handlers

apps._add('rtc', 'connect', connected);

apps._add('rtc', 'other', connected_other);

apps._add('rtc', 'others', connected_others);

apps._add('rtc', 'disconnected', disconnected_other);

apps._add('rtc', 'signal', signalled);

 14

A group call in progress

 15

Join Call – client.js

● Join Call → handleCallButton(event)
● Sends message through websocket: {‘join’: ‘video’}

 16

New person joining a group call

 17

Join Call – In the Channels consumer

● Get a list of all other occupants in the room

● Create an html div for each other occupant, sends to self

● Create an html div for self, sends to all other occupants

● Send “other” signal to all other occupants in the room

● Send “Connect” event to self.

 18

The WebRTC div

{% load static %}
<div id="others" hx-swap-oob="beforeend">
 <div id="{{id}}-div">
 <figure id="{{id}}">
 <video autoplay playsinline poster="{% static 'blank.png' %}">
 </video>
 <figcaption>{{user_name}}</figcaption>
 </figure>
 </div>
</div>

 19

New person joining a group call

 20

Negotiating a connection

● Both sides want to communicate with each other
● But, the real world is a messy place…

 21

The “simplified” flow of events, browser-to-browser – pt 1

 22

Part 2 – Complete docs at https://w3c.github.io/webrtc-pc/

 23

What is negotiated?

● ICE – Interactive Connectivity Establishment
● MDN defines ICE as:

● A framework facilitating the connection of two peers,
regardless of network topology.

● Looks for the lowest-latency path:
● Direct UDP
● Direct TCP (through http or https, in that order)
● Indirect, via TURN server

 24

This is where coturn fits in.

● Open Source package, available for most distros
● https://github.com/coturn/coturn

● Supports two key protocols
● STUN: Session Traversal Utilities for NAT
● TURN: Traversal Using Relays around NAT

https://github.com/coturn/coturn

 25

Set your phasers for ...

● STUN: Session Transversal Utilities for NAT
● Think of it as “What’s my IP” for WebRTC
● Low traffic utilization
● Many public servers available
● Can configure multiple STUN servers for use

● Greatly multiplies traffic as all paths are evaluated

 26

When there’s no other path

● TURN: Traversal Using Relays around NAT
● All data streams are passed through it
● Extremely high traffic utilization

● It can become a severe bottleneck in large group situations
● You NEED to implement the security layer ...

● … unless you have an unlimited budget for data
● No public servers available …

● … at least not for long

 27

How are they defined?

 rtc_config: {
 IceServers: [
 { urls: 'stun:kww.us:3478' },
 { urls: 'stun:stun.l.google.com:19302' },
 {
 urls: 'turn:kww.us:3478',
 username: "dcus",
 credential: "dcus2024",
 },
],
 iceTransportPolicy: "all"
 },

 28

What else is negotiated?

● SDP – Session Description Protocol
● Describes the content of the connection

● Resolution, Codecs, Encryption (if any), etc

● Technically, a data format, not a protocol – sample:
a=ice-ufrag:hyrq
a=rtpmap:111 opus/48000/2

● Can be 100 lines or more
● Fortunately, you don’t need to know anything about this. This is all

handled by the browser. But…
● These become messages through Channels
● You will need to increase your channel capacity

 29

Lots of data going back and forth

● There’s another aspect to this exchange …

● What happens when both sides initiate a connection at the same
time?

 30

Arranging a meeting between two people – the “Ideal”

● “Let’s meet in the lobby.”
●

● “How about 6 PM?”
●

● “Good. I’ll see you there”

●

● “Ok, what time?”
●

● “Great! I’ll see you in the lobby
at 6 PM.”

 31

What could happen

● “Let’s meet at the bar”

● “Ok, meet you in the lobby at
7 PM?”

● “Cool, I’ll be in the bar at 6.”

● (???)

● “Let’s meet in the lobby”

● “I’ll find you in the bar, 6 PM?”

● “Great, lobby at 7.”

● (???)

 32

What *should* happen

● “Let’s meet at the bar”

● <pause>

● “Cool, I’ll be in the bar at 6.”

● “Let’s meet in the lobby”

● “I’ll find you in the bar, 6 PM?”

● “Great, see you then.”

 33

The “Perfect Negotiation” protocol

● https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/
Perfect_negotiation

● Two roles are defined between the peers
● Polite
● Impolite

● The assignment is completely arbitrary
● The assignment must be deterministic

● Everybody must understand the rules
● In this case, the new caller is impolite

https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Perfect_negotiation
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Perfect_negotiation

 34

Once the negotiation is complete...

● The media streams are assigned to the “<video>” tag

<video autoplay playsinline poster="{% static 'img/placeholder.png' %}">
</video>

● Data Channels can also be created to share non-AV data
● Static images
● Text

 35

Things not covered here

● Audio
● Data channels
● Multiple rooms
● Coturn security
● Room cleanup
● Multiple turn servers

● Diagnostics and troubleshooting
● chrome://webrtc-internals/
● Firefox developer tools

● Deployment
● See the notes in README.MD

 36

Thank you!
Best place to find me?

https://forum.djangoproject.com/
(And I’m here tomorrow and Friday morning)

https://forum.djangoproject.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

