
Using WebRTC with
Django

Channels
HTMX

&
Coturn

Ken Whitesell – DjangoCon US 2024



  2

Demo site

https://demo.kww.us/
● There is no separate user registration 

form
● Entering your first name and real name 

creates a user.
● No password is necessary.

● The only requirement is that the first name 
matches the first name entered when the 
real name is entered
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History

● WebRTC first released in 2011
● Standardized in 2018
● Adopted as W3C recommended 

standard in 2021
● Still tough to find current and 

accurate information

https://demo.kww.us/
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History

● WebRTC first released in 2011
● Standardized in 2018
● Adopted as W3C recommended 

standard in 2021
● Still tough to find current and 

accurate information
● If you have interest in this topic, 

buy this book!
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Demo site & Code – Final time

https://demo.kww.us/

https://github.com/KenWhitesell/rtc_demo.git
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Overall architecture
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The Parts

Django - https://docs.djangoproject.com/en/5.1/
● Serving web page and JavaScript, Provides authentication

Channels - https://github.com/django/channels
● Websocket for communications signaling

HTMX - https://htmx.org/ 
● Websocket in browser, HTML injection

Coturn - https://github.com/coturn/coturn
● IP NAT traversal (Using STUN for address identification)

● Connection hub when direct connection isn’t possible (TURN)
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The home page

● HTMX is loaded
● Websocket extension is loaded
● Custom transformResponse extension is loaded – static/js/tr.js

● Assumes data coming through websocket is JSON
● Looks for specific keys

● “remove” – Removes an html element
● “html” – HTML to be injected into the page as a normal htmx message

● All other keys assumed to be for a “registered app”
● Provides facilities to multiplex the websocket usage
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Multiplexing a websocket
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Websocket JSON - transformResponse

{

    ‘<app name 1>’: {

        ‘type’: ‘<event 1>’,

        ‘<key 1>’: ‘<data 1>’

    },

    ‘<app name 2>’: {

 ‘type’: ‘<event b>’

        ‘<key 1>’: ‘<data 1>’

    },

    ‘html’: ‘<div id=”new-div”>This is text being injected into the page</div>’

}
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WebRTC Events

● RTC events received from consumer
● connect – save the channel_name
● other – open connection to one peer
● others – open connections with multiple peers
● signal – receive initial connection info from peers via Channels
● disconnected – disconnect from peer
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tr.js
transformResponse : function(text, xhr, elt) {
    const data = JSON.parse(text);
    for ([app, message] of Object.entries(data)) {
                var event = message.type;
                apps._forward(app, event, message)
     } 

'_forward': function(app, name, message) {
    if (apps[app] && apps[app].has(name)) {
        for (target of apps[app].get(name)) {
            target(message);
        }
    }
} 
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Client.js – Registering event handlers

apps._add('rtc', 'connect', connected);

apps._add('rtc', 'other', connected_other);

apps._add('rtc', 'others', connected_others);

apps._add('rtc', 'disconnected', disconnected_other);

apps._add('rtc', 'signal', signalled); 
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A group call in progress
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Join Call – client.js

● Join Call → handleCallButton(event)
● Sends message through websocket: {‘join’: ‘video’}
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New person joining a group call
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Join Call – In the Channels consumer

● Get a list of all other occupants in the room

● Create an html div for each other occupant, sends to self

● Create an html div for self, sends to all other occupants

● Send “other” signal to all other occupants in the room

● Send “Connect” event to self.
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The WebRTC div

{% load static %}
<div id="others" hx-swap-oob="beforeend">
  <div id="{{id}}-div">
      <figure id="{{id}}">
        <video autoplay playsinline poster="{% static 'blank.png' %}">
        </video>
        <figcaption>{{user_name}}</figcaption>
      </figure>
  </div>
</div>
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New person joining a group call
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Negotiating a connection

● Both sides want to communicate with each other
● But, the real world is a messy place…
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The “simplified” flow of events, browser-to-browser – pt 1
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Part 2 – Complete docs at https://w3c.github.io/webrtc-pc/
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What is negotiated?

● ICE – Interactive Connectivity Establishment
● MDN defines ICE as:

● A framework facilitating the connection of two peers, 
regardless of network topology.

● Looks for the lowest-latency path:
● Direct UDP
● Direct TCP (through http or https, in that order)
● Indirect, via TURN server
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This is where coturn fits in.

● Open Source package, available for most distros
● https://github.com/coturn/coturn

● Supports two key protocols
● STUN: Session Traversal Utilities for NAT
● TURN: Traversal Using Relays around NAT

https://github.com/coturn/coturn
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Set your phasers for ...

● STUN: Session Transversal Utilities for NAT
● Think of it as “What’s my IP” for WebRTC
● Low traffic utilization
● Many public servers available
● Can configure multiple STUN servers for use

● Greatly multiplies traffic as all paths are evaluated
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When there’s no other path

● TURN: Traversal Using Relays around NAT
● All data streams are passed through it
● Extremely high traffic utilization

● It can become a severe bottleneck in large group situations
● You NEED to implement the security layer ...

● … unless you have an unlimited budget for data
● No public servers available …

● … at least not for long
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How are they defined?

    rtc_config: {
        IceServers: [
            { urls: 'stun:kww.us:3478' },
            { urls: 'stun:stun.l.google.com:19302' },
            {
                urls: 'turn:kww.us:3478',
                username: "dcus",
                credential: "dcus2024",
            },
        ],
        iceTransportPolicy: "all"
    }, 
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What else is negotiated?

● SDP – Session Description Protocol
● Describes the content of the connection

● Resolution, Codecs, Encryption (if any), etc

● Technically, a data format, not a protocol – sample:
a=ice-ufrag:hyrq
a=rtpmap:111 opus/48000/2

● Can be 100 lines or more
● Fortunately, you don’t need to know anything about this. This is all 

handled by the browser. But…
● These become messages through Channels
● You will need to increase your channel capacity
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Lots of data going back and forth

● There’s another aspect to this exchange …

● What happens when both sides initiate a connection at the same 
time?
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Arranging a meeting between two people – the “Ideal”

● “Let’s meet in the lobby.”
●

● “How about 6 PM?”
●

● “Good. I’ll see you there”

●

● “Ok, what time?”
●

● “Great! I’ll see you in the lobby 
at 6 PM.”
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What could happen

● “Let’s meet at the bar”

● “Ok, meet you in the lobby at 
7 PM?”

● “Cool, I’ll be in the bar at 6.”

● (???)

● “Let’s meet in the lobby”

● “I’ll find you in the bar, 6 PM?”

● “Great, lobby at  7.”

● (???)
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What *should* happen

● “Let’s meet at the bar”

● <pause>

● “Cool, I’ll be in the bar at 6.”

● “Let’s meet in the lobby”

● “I’ll find you in the bar, 6 PM?”

● “Great, see you then.”
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The “Perfect Negotiation” protocol

● https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/
Perfect_negotiation

● Two roles are defined between the peers
● Polite
● Impolite

● The assignment is completely arbitrary
● The assignment must be deterministic

● Everybody must understand the rules
● In this case, the new caller is impolite

https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Perfect_negotiation
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Perfect_negotiation
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Once the negotiation is complete...

● The media streams are assigned to the “<video>” tag

<video autoplay playsinline poster="{% static 'img/placeholder.png' %}">
</video> 

● Data Channels can also be created to share non-AV data
● Static images
● Text
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Things not covered here

● Audio
● Data channels
● Multiple rooms
● Coturn security
● Room cleanup
● Multiple turn servers

● Diagnostics and troubleshooting
● chrome://webrtc-internals/
● Firefox developer tools

● Deployment
● See the notes in README.MD
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Thank you!
Best place to find me?

https://forum.djangoproject.com/
(And I’m here tomorrow and Friday morning)

https://forum.djangoproject.com/
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