Professional video processing pipeline with AI analysis, 360° processing, and adaptive streaming capabilities. ✨ Core Features: • AI-powered content analysis with scene detection and quality assessment • Next-generation codec support (AV1, HEVC, HDR10) • Adaptive streaming (HLS/DASH) with smart bitrate ladders • Complete 360° video processing with multiple projection support • Spatial audio processing (Ambisonic, binaural, object-based) • Viewport-adaptive streaming with up to 75% bandwidth savings • Professional testing framework with video-themed HTML dashboards 🏗️ Architecture: • Modern Python 3.11+ with full type hints • Pydantic-based configuration with validation • Async processing with Procrastinate task queue • Comprehensive test coverage with 11 detailed examples • Professional documentation structure 🚀 Production Ready: • MIT License for open source use • PyPI-ready package metadata • Docker support for scalable deployment • Quality assurance with ruff, mypy, and pytest • Comprehensive example library From simple encoding to immersive experiences - complete multimedia processing platform for modern applications.
238 lines
8.2 KiB
Python
238 lines
8.2 KiB
Python
"""Demo test showcasing the video processing testing framework capabilities."""
|
|
|
|
import pytest
|
|
import time
|
|
from pathlib import Path
|
|
|
|
|
|
@pytest.mark.smoke
|
|
def test_framework_smoke_test(quality_tracker, video_test_config, video_assert):
|
|
"""Quick smoke test to verify framework functionality."""
|
|
# Record some basic assertions for quality tracking
|
|
quality_tracker.record_assertion(True, "Framework initialization successful")
|
|
quality_tracker.record_assertion(True, "Configuration loaded correctly")
|
|
quality_tracker.record_assertion(True, "Quality tracker working")
|
|
|
|
# Test basic configuration
|
|
assert video_test_config.project_name == "Video Processor"
|
|
assert video_test_config.parallel_workers >= 1
|
|
|
|
# Test custom assertions
|
|
video_assert.assert_video_quality(8.5, 7.0) # Should pass
|
|
video_assert.assert_encoding_performance(15.0, 10.0) # Should pass
|
|
|
|
print("✅ Framework smoke test completed successfully")
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_enhanced_fixtures(enhanced_temp_dir, video_config, test_video_scenarios):
|
|
"""Test the enhanced fixtures provided by the framework."""
|
|
# Test enhanced temp directory structure
|
|
assert enhanced_temp_dir.exists()
|
|
assert (enhanced_temp_dir / "input").exists()
|
|
assert (enhanced_temp_dir / "output").exists()
|
|
assert (enhanced_temp_dir / "thumbnails").exists()
|
|
assert (enhanced_temp_dir / "sprites").exists()
|
|
assert (enhanced_temp_dir / "logs").exists()
|
|
|
|
# Test video configuration
|
|
assert video_config.base_path == enhanced_temp_dir
|
|
assert "mp4" in video_config.output_formats
|
|
assert "webm" in video_config.output_formats
|
|
|
|
# Test video scenarios
|
|
assert "standard_hd" in test_video_scenarios
|
|
assert "short_clip" in test_video_scenarios
|
|
assert test_video_scenarios["standard_hd"]["resolution"] == "1920x1080"
|
|
|
|
print("✅ Enhanced fixtures test completed")
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_quality_metrics_tracking(quality_tracker):
|
|
"""Test quality metrics tracking functionality."""
|
|
# Simulate some test activity
|
|
quality_tracker.record_assertion(True, "Basic functionality works")
|
|
quality_tracker.record_assertion(True, "Configuration is valid")
|
|
quality_tracker.record_assertion(False, "This is an expected failure for testing")
|
|
|
|
# Record a warning
|
|
quality_tracker.record_warning("This is a test warning")
|
|
|
|
# Simulate video processing
|
|
quality_tracker.record_video_processing(
|
|
input_size_mb=50.0,
|
|
duration=2.5,
|
|
output_quality=8.7
|
|
)
|
|
|
|
# The metrics will be finalized automatically by the framework
|
|
print("✅ Quality metrics tracking test completed")
|
|
|
|
|
|
@pytest.mark.integration
|
|
def test_mock_ffmpeg_environment(mock_ffmpeg_environment, quality_tracker):
|
|
"""Test the comprehensive FFmpeg mocking environment."""
|
|
# Test that mocks are available
|
|
assert "success" in mock_ffmpeg_environment
|
|
assert "failure" in mock_ffmpeg_environment
|
|
assert "probe" in mock_ffmpeg_environment
|
|
|
|
# Record this as a successful integration test
|
|
quality_tracker.record_assertion(True, "FFmpeg environment mocked successfully")
|
|
quality_tracker.record_video_processing(
|
|
input_size_mb=25.0,
|
|
duration=1.2,
|
|
output_quality=9.0
|
|
)
|
|
|
|
print("✅ FFmpeg environment test completed")
|
|
|
|
|
|
@pytest.mark.performance
|
|
def test_performance_benchmarking(performance_benchmarks, quality_tracker):
|
|
"""Test performance benchmarking functionality."""
|
|
# Simulate a performance test
|
|
start_time = time.time()
|
|
|
|
# Simulate some work
|
|
time.sleep(0.1)
|
|
|
|
duration = time.time() - start_time
|
|
|
|
# Check against benchmarks
|
|
h264_720p_target = performance_benchmarks["encoding"]["h264_720p"]
|
|
assert h264_720p_target > 0
|
|
|
|
# Record performance metrics
|
|
simulated_fps = 20.0 # Simulated encoding FPS
|
|
quality_tracker.record_video_processing(
|
|
input_size_mb=30.0,
|
|
duration=duration,
|
|
output_quality=8.0
|
|
)
|
|
|
|
quality_tracker.record_assertion(
|
|
simulated_fps >= 10.0,
|
|
f"Encoding FPS {simulated_fps} meets minimum requirement"
|
|
)
|
|
|
|
print(f"✅ Performance test completed in {duration:.3f}s")
|
|
|
|
|
|
@pytest.mark.video_360
|
|
def test_360_video_fixtures(video_360_fixtures, quality_tracker):
|
|
"""Test 360° video processing fixtures."""
|
|
# Test equirectangular projection
|
|
equirect = video_360_fixtures["equirectangular"]
|
|
assert equirect["projection"] == "equirectangular"
|
|
assert equirect["fov"] == 360
|
|
assert equirect["resolution"] == "4096x2048"
|
|
|
|
# Test cubemap projection
|
|
cubemap = video_360_fixtures["cubemap"]
|
|
assert cubemap["projection"] == "cubemap"
|
|
assert cubemap["expected_faces"] == 6
|
|
|
|
# Record 360° specific metrics
|
|
quality_tracker.record_assertion(True, "360° fixtures loaded correctly")
|
|
quality_tracker.record_video_processing(
|
|
input_size_mb=150.0, # 360° videos are typically larger
|
|
duration=5.0,
|
|
output_quality=8.5
|
|
)
|
|
|
|
print("✅ 360° video fixtures test completed")
|
|
|
|
|
|
@pytest.mark.ai_analysis
|
|
def test_ai_analysis_fixtures(ai_analysis_fixtures, quality_tracker):
|
|
"""Test AI analysis fixtures."""
|
|
# Test scene detection configuration
|
|
scene_detection = ai_analysis_fixtures["scene_detection"]
|
|
assert scene_detection["min_scene_duration"] == 2.0
|
|
assert scene_detection["confidence_threshold"] == 0.8
|
|
assert len(scene_detection["expected_scenes"]) == 2
|
|
|
|
# Test object tracking configuration
|
|
object_tracking = ai_analysis_fixtures["object_tracking"]
|
|
assert object_tracking["min_object_size"] == 50
|
|
assert object_tracking["max_objects_per_frame"] == 10
|
|
|
|
# Record AI analysis metrics
|
|
quality_tracker.record_assertion(True, "AI analysis fixtures configured")
|
|
quality_tracker.record_assertion(True, "Scene detection parameters valid")
|
|
|
|
print("✅ AI analysis fixtures test completed")
|
|
|
|
|
|
@pytest.mark.streaming
|
|
def test_streaming_fixtures(streaming_fixtures, quality_tracker):
|
|
"""Test streaming and adaptive bitrate fixtures."""
|
|
# Test adaptive streaming configuration
|
|
adaptive = streaming_fixtures["adaptive_streams"]
|
|
assert "360p" in adaptive["resolutions"]
|
|
assert "720p" in adaptive["resolutions"]
|
|
assert "1080p" in adaptive["resolutions"]
|
|
assert len(adaptive["bitrates"]) == 3
|
|
|
|
# Test live streaming configuration
|
|
live = streaming_fixtures["live_streaming"]
|
|
assert live["latency_target"] == 3.0
|
|
assert live["keyframe_interval"] == 2.0
|
|
|
|
# Record streaming metrics
|
|
quality_tracker.record_assertion(True, "Streaming fixtures configured")
|
|
quality_tracker.record_video_processing(
|
|
input_size_mb=100.0,
|
|
duration=3.0,
|
|
output_quality=7.8
|
|
)
|
|
|
|
print("✅ Streaming fixtures test completed")
|
|
|
|
|
|
@pytest.mark.slow
|
|
def test_comprehensive_framework_integration(
|
|
enhanced_temp_dir,
|
|
video_config,
|
|
quality_tracker,
|
|
test_artifacts_dir,
|
|
video_assert
|
|
):
|
|
"""Comprehensive test demonstrating full framework integration."""
|
|
# Test artifacts directory
|
|
assert test_artifacts_dir.exists()
|
|
assert test_artifacts_dir.name.startswith("test_comprehensive_framework_integration")
|
|
|
|
# Create a test artifact
|
|
test_artifact = test_artifacts_dir / "test_output.txt"
|
|
test_artifact.write_text("This is a test artifact")
|
|
assert test_artifact.exists()
|
|
|
|
# Simulate comprehensive video processing workflow
|
|
quality_tracker.record_assertion(True, "Test environment setup")
|
|
quality_tracker.record_assertion(True, "Configuration validated")
|
|
quality_tracker.record_assertion(True, "Input video loaded")
|
|
|
|
# Simulate multiple processing steps
|
|
for i in range(3):
|
|
quality_tracker.record_video_processing(
|
|
input_size_mb=40.0 + i * 10,
|
|
duration=1.0 + i * 0.5,
|
|
output_quality=8.0 + i * 0.2
|
|
)
|
|
|
|
# Test custom assertions
|
|
video_assert.assert_duration_preserved(10.0, 10.1, 0.2) # Should pass
|
|
video_assert.assert_file_size_reasonable(45.0, 100.0) # Should pass
|
|
|
|
quality_tracker.record_assertion(True, "All processing steps completed")
|
|
quality_tracker.record_assertion(True, "Output validation successful")
|
|
|
|
print("✅ Comprehensive framework integration test completed")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Allow running this test file directly for quick testing
|
|
pytest.main([__file__, "-v"]) |