Ryan Malloy 840bd34f29 🎬 Video Processor v0.4.0 - Complete Multimedia Processing Platform
Professional video processing pipeline with AI analysis, 360° processing,
and adaptive streaming capabilities.

 Core Features:
• AI-powered content analysis with scene detection and quality assessment
• Next-generation codec support (AV1, HEVC, HDR10)
• Adaptive streaming (HLS/DASH) with smart bitrate ladders
• Complete 360° video processing with multiple projection support
• Spatial audio processing (Ambisonic, binaural, object-based)
• Viewport-adaptive streaming with up to 75% bandwidth savings
• Professional testing framework with video-themed HTML dashboards

🏗️ Architecture:
• Modern Python 3.11+ with full type hints
• Pydantic-based configuration with validation
• Async processing with Procrastinate task queue
• Comprehensive test coverage with 11 detailed examples
• Professional documentation structure

🚀 Production Ready:
• MIT License for open source use
• PyPI-ready package metadata
• Docker support for scalable deployment
• Quality assurance with ruff, mypy, and pytest
• Comprehensive example library

From simple encoding to immersive experiences - complete multimedia
processing platform for modern applications.
2025-09-22 01:18:49 -06:00

238 lines
8.2 KiB
Python

"""Demo test showcasing the video processing testing framework capabilities."""
import pytest
import time
from pathlib import Path
@pytest.mark.smoke
def test_framework_smoke_test(quality_tracker, video_test_config, video_assert):
"""Quick smoke test to verify framework functionality."""
# Record some basic assertions for quality tracking
quality_tracker.record_assertion(True, "Framework initialization successful")
quality_tracker.record_assertion(True, "Configuration loaded correctly")
quality_tracker.record_assertion(True, "Quality tracker working")
# Test basic configuration
assert video_test_config.project_name == "Video Processor"
assert video_test_config.parallel_workers >= 1
# Test custom assertions
video_assert.assert_video_quality(8.5, 7.0) # Should pass
video_assert.assert_encoding_performance(15.0, 10.0) # Should pass
print("✅ Framework smoke test completed successfully")
@pytest.mark.unit
def test_enhanced_fixtures(enhanced_temp_dir, video_config, test_video_scenarios):
"""Test the enhanced fixtures provided by the framework."""
# Test enhanced temp directory structure
assert enhanced_temp_dir.exists()
assert (enhanced_temp_dir / "input").exists()
assert (enhanced_temp_dir / "output").exists()
assert (enhanced_temp_dir / "thumbnails").exists()
assert (enhanced_temp_dir / "sprites").exists()
assert (enhanced_temp_dir / "logs").exists()
# Test video configuration
assert video_config.base_path == enhanced_temp_dir
assert "mp4" in video_config.output_formats
assert "webm" in video_config.output_formats
# Test video scenarios
assert "standard_hd" in test_video_scenarios
assert "short_clip" in test_video_scenarios
assert test_video_scenarios["standard_hd"]["resolution"] == "1920x1080"
print("✅ Enhanced fixtures test completed")
@pytest.mark.unit
def test_quality_metrics_tracking(quality_tracker):
"""Test quality metrics tracking functionality."""
# Simulate some test activity
quality_tracker.record_assertion(True, "Basic functionality works")
quality_tracker.record_assertion(True, "Configuration is valid")
quality_tracker.record_assertion(False, "This is an expected failure for testing")
# Record a warning
quality_tracker.record_warning("This is a test warning")
# Simulate video processing
quality_tracker.record_video_processing(
input_size_mb=50.0,
duration=2.5,
output_quality=8.7
)
# The metrics will be finalized automatically by the framework
print("✅ Quality metrics tracking test completed")
@pytest.mark.integration
def test_mock_ffmpeg_environment(mock_ffmpeg_environment, quality_tracker):
"""Test the comprehensive FFmpeg mocking environment."""
# Test that mocks are available
assert "success" in mock_ffmpeg_environment
assert "failure" in mock_ffmpeg_environment
assert "probe" in mock_ffmpeg_environment
# Record this as a successful integration test
quality_tracker.record_assertion(True, "FFmpeg environment mocked successfully")
quality_tracker.record_video_processing(
input_size_mb=25.0,
duration=1.2,
output_quality=9.0
)
print("✅ FFmpeg environment test completed")
@pytest.mark.performance
def test_performance_benchmarking(performance_benchmarks, quality_tracker):
"""Test performance benchmarking functionality."""
# Simulate a performance test
start_time = time.time()
# Simulate some work
time.sleep(0.1)
duration = time.time() - start_time
# Check against benchmarks
h264_720p_target = performance_benchmarks["encoding"]["h264_720p"]
assert h264_720p_target > 0
# Record performance metrics
simulated_fps = 20.0 # Simulated encoding FPS
quality_tracker.record_video_processing(
input_size_mb=30.0,
duration=duration,
output_quality=8.0
)
quality_tracker.record_assertion(
simulated_fps >= 10.0,
f"Encoding FPS {simulated_fps} meets minimum requirement"
)
print(f"✅ Performance test completed in {duration:.3f}s")
@pytest.mark.video_360
def test_360_video_fixtures(video_360_fixtures, quality_tracker):
"""Test 360° video processing fixtures."""
# Test equirectangular projection
equirect = video_360_fixtures["equirectangular"]
assert equirect["projection"] == "equirectangular"
assert equirect["fov"] == 360
assert equirect["resolution"] == "4096x2048"
# Test cubemap projection
cubemap = video_360_fixtures["cubemap"]
assert cubemap["projection"] == "cubemap"
assert cubemap["expected_faces"] == 6
# Record 360° specific metrics
quality_tracker.record_assertion(True, "360° fixtures loaded correctly")
quality_tracker.record_video_processing(
input_size_mb=150.0, # 360° videos are typically larger
duration=5.0,
output_quality=8.5
)
print("✅ 360° video fixtures test completed")
@pytest.mark.ai_analysis
def test_ai_analysis_fixtures(ai_analysis_fixtures, quality_tracker):
"""Test AI analysis fixtures."""
# Test scene detection configuration
scene_detection = ai_analysis_fixtures["scene_detection"]
assert scene_detection["min_scene_duration"] == 2.0
assert scene_detection["confidence_threshold"] == 0.8
assert len(scene_detection["expected_scenes"]) == 2
# Test object tracking configuration
object_tracking = ai_analysis_fixtures["object_tracking"]
assert object_tracking["min_object_size"] == 50
assert object_tracking["max_objects_per_frame"] == 10
# Record AI analysis metrics
quality_tracker.record_assertion(True, "AI analysis fixtures configured")
quality_tracker.record_assertion(True, "Scene detection parameters valid")
print("✅ AI analysis fixtures test completed")
@pytest.mark.streaming
def test_streaming_fixtures(streaming_fixtures, quality_tracker):
"""Test streaming and adaptive bitrate fixtures."""
# Test adaptive streaming configuration
adaptive = streaming_fixtures["adaptive_streams"]
assert "360p" in adaptive["resolutions"]
assert "720p" in adaptive["resolutions"]
assert "1080p" in adaptive["resolutions"]
assert len(adaptive["bitrates"]) == 3
# Test live streaming configuration
live = streaming_fixtures["live_streaming"]
assert live["latency_target"] == 3.0
assert live["keyframe_interval"] == 2.0
# Record streaming metrics
quality_tracker.record_assertion(True, "Streaming fixtures configured")
quality_tracker.record_video_processing(
input_size_mb=100.0,
duration=3.0,
output_quality=7.8
)
print("✅ Streaming fixtures test completed")
@pytest.mark.slow
def test_comprehensive_framework_integration(
enhanced_temp_dir,
video_config,
quality_tracker,
test_artifacts_dir,
video_assert
):
"""Comprehensive test demonstrating full framework integration."""
# Test artifacts directory
assert test_artifacts_dir.exists()
assert test_artifacts_dir.name.startswith("test_comprehensive_framework_integration")
# Create a test artifact
test_artifact = test_artifacts_dir / "test_output.txt"
test_artifact.write_text("This is a test artifact")
assert test_artifact.exists()
# Simulate comprehensive video processing workflow
quality_tracker.record_assertion(True, "Test environment setup")
quality_tracker.record_assertion(True, "Configuration validated")
quality_tracker.record_assertion(True, "Input video loaded")
# Simulate multiple processing steps
for i in range(3):
quality_tracker.record_video_processing(
input_size_mb=40.0 + i * 10,
duration=1.0 + i * 0.5,
output_quality=8.0 + i * 0.2
)
# Test custom assertions
video_assert.assert_duration_preserved(10.0, 10.1, 0.2) # Should pass
video_assert.assert_file_size_reasonable(45.0, 100.0) # Should pass
quality_tracker.record_assertion(True, "All processing steps completed")
quality_tracker.record_assertion(True, "Output validation successful")
print("✅ Comprehensive framework integration test completed")
if __name__ == "__main__":
# Allow running this test file directly for quick testing
pytest.main([__file__, "-v"])