Professional video processing pipeline with AI analysis, 360° processing, and adaptive streaming capabilities. ✨ Core Features: • AI-powered content analysis with scene detection and quality assessment • Next-generation codec support (AV1, HEVC, HDR10) • Adaptive streaming (HLS/DASH) with smart bitrate ladders • Complete 360° video processing with multiple projection support • Spatial audio processing (Ambisonic, binaural, object-based) • Viewport-adaptive streaming with up to 75% bandwidth savings • Professional testing framework with video-themed HTML dashboards 🏗️ Architecture: • Modern Python 3.11+ with full type hints • Pydantic-based configuration with validation • Async processing with Procrastinate task queue • Comprehensive test coverage with 11 detailed examples • Professional documentation structure 🚀 Production Ready: • MIT License for open source use • PyPI-ready package metadata • Docker support for scalable deployment • Quality assurance with ruff, mypy, and pytest • Comprehensive example library From simple encoding to immersive experiences - complete multimedia processing platform for modern applications.
259 lines
8.7 KiB
Python
259 lines
8.7 KiB
Python
#!/usr/bin/env python3
|
|
"""Demo showing the video processing testing framework in action."""
|
|
|
|
import pytest
|
|
import tempfile
|
|
import shutil
|
|
from pathlib import Path
|
|
|
|
# Import framework components directly
|
|
from tests.framework.config import TestingConfig
|
|
from tests.framework.quality import QualityMetricsCalculator
|
|
from tests.framework.reporters import HTMLReporter, JSONReporter, TestResult
|
|
|
|
|
|
@pytest.mark.smoke
|
|
def test_framework_smoke_demo():
|
|
"""Demo smoke test showing framework capabilities."""
|
|
# Create quality tracker
|
|
tracker = QualityMetricsCalculator("framework_smoke_demo")
|
|
|
|
# Record some test activity
|
|
tracker.record_assertion(True, "Framework initialization successful")
|
|
tracker.record_assertion(True, "Configuration loaded correctly")
|
|
tracker.record_assertion(True, "Quality tracker working")
|
|
|
|
# Test configuration
|
|
config = TestingConfig()
|
|
assert config.project_name == "Video Processor"
|
|
assert config.parallel_workers >= 1
|
|
|
|
# Simulate video processing
|
|
tracker.record_video_processing(
|
|
input_size_mb=50.0,
|
|
duration=2.5,
|
|
output_quality=8.7
|
|
)
|
|
|
|
print("✅ Framework smoke test completed successfully")
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_enhanced_configuration():
|
|
"""Test enhanced configuration capabilities."""
|
|
tracker = QualityMetricsCalculator("enhanced_configuration")
|
|
|
|
# Create configuration from environment
|
|
config = TestingConfig.from_env()
|
|
|
|
# Test configuration properties
|
|
tracker.record_assertion(config.parallel_workers > 0, "Parallel workers configured")
|
|
tracker.record_assertion(config.timeout_seconds > 0, "Timeout configured")
|
|
tracker.record_assertion(config.reports_dir.exists(), "Reports directory exists")
|
|
|
|
# Test pytest args generation
|
|
args = config.get_pytest_args()
|
|
tracker.record_assertion(len(args) > 0, "Pytest args generated")
|
|
|
|
# Test coverage args
|
|
coverage_args = config.get_coverage_args()
|
|
tracker.record_assertion("--cov=src/" in coverage_args, "Coverage configured for src/")
|
|
|
|
print("✅ Enhanced configuration test completed")
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_quality_scoring():
|
|
"""Test quality metrics and scoring system."""
|
|
tracker = QualityMetricsCalculator("quality_scoring_test")
|
|
|
|
# Record comprehensive test data
|
|
for i in range(10):
|
|
tracker.record_assertion(True, f"Test assertion {i+1}")
|
|
|
|
# Record one expected failure
|
|
tracker.record_assertion(False, "Expected edge case failure for testing")
|
|
|
|
# Record a warning
|
|
tracker.record_warning("Non-critical issue detected during testing")
|
|
|
|
# Record multiple video processing operations
|
|
for i in range(3):
|
|
tracker.record_video_processing(
|
|
input_size_mb=40.0 + i * 10,
|
|
duration=1.5 + i * 0.5,
|
|
output_quality=8.0 + i * 0.3
|
|
)
|
|
|
|
# Finalize and check metrics
|
|
metrics = tracker.finalize()
|
|
|
|
# Validate metrics
|
|
assert metrics.test_name == "quality_scoring_test"
|
|
assert metrics.assertions_total == 11
|
|
assert metrics.assertions_passed == 10
|
|
assert metrics.videos_processed == 3
|
|
assert metrics.overall_score > 0
|
|
|
|
print(f"✅ Quality scoring test completed - Overall Score: {metrics.overall_score:.1f}/10")
|
|
print(f" Grade: {metrics.grade}")
|
|
|
|
|
|
@pytest.mark.integration
|
|
def test_html_report_generation():
|
|
"""Test HTML report generation with video theme."""
|
|
config = TestingConfig()
|
|
reporter = HTMLReporter(config)
|
|
|
|
# Create mock test results with quality metrics
|
|
from tests.framework.quality import TestQualityMetrics
|
|
from datetime import datetime
|
|
|
|
# Create various test scenarios
|
|
test_scenarios = [
|
|
{
|
|
"name": "test_video_encoding_h264",
|
|
"status": "passed",
|
|
"duration": 2.5,
|
|
"category": "Unit",
|
|
"quality": TestQualityMetrics(
|
|
test_name="test_video_encoding_h264",
|
|
timestamp=datetime.now(),
|
|
duration=2.5,
|
|
success=True,
|
|
functional_score=9.0,
|
|
performance_score=8.5,
|
|
reliability_score=9.2,
|
|
maintainability_score=8.8,
|
|
assertions_passed=15,
|
|
assertions_total=15,
|
|
videos_processed=1,
|
|
encoding_fps=12.0
|
|
)
|
|
},
|
|
{
|
|
"name": "test_360_video_processing",
|
|
"status": "passed",
|
|
"duration": 15.2,
|
|
"category": "360°",
|
|
"quality": TestQualityMetrics(
|
|
test_name="test_360_video_processing",
|
|
timestamp=datetime.now(),
|
|
duration=15.2,
|
|
success=True,
|
|
functional_score=8.7,
|
|
performance_score=7.5,
|
|
reliability_score=8.9,
|
|
maintainability_score=8.2,
|
|
assertions_passed=22,
|
|
assertions_total=25,
|
|
videos_processed=1,
|
|
encoding_fps=3.2
|
|
)
|
|
},
|
|
{
|
|
"name": "test_streaming_integration",
|
|
"status": "failed",
|
|
"duration": 5.8,
|
|
"category": "Integration",
|
|
"error_message": "Streaming endpoint connection timeout after 30s",
|
|
"quality": TestQualityMetrics(
|
|
test_name="test_streaming_integration",
|
|
timestamp=datetime.now(),
|
|
duration=5.8,
|
|
success=False,
|
|
functional_score=4.0,
|
|
performance_score=6.0,
|
|
reliability_score=3.5,
|
|
maintainability_score=7.0,
|
|
assertions_passed=8,
|
|
assertions_total=12,
|
|
error_count=1
|
|
)
|
|
},
|
|
{
|
|
"name": "test_ai_analysis_smoke",
|
|
"status": "skipped",
|
|
"duration": 0.1,
|
|
"category": "AI",
|
|
"error_message": "AI analysis dependencies not available in CI environment"
|
|
}
|
|
]
|
|
|
|
# Add test results to reporter
|
|
for scenario in test_scenarios:
|
|
result = TestResult(
|
|
name=scenario["name"],
|
|
status=scenario["status"],
|
|
duration=scenario["duration"],
|
|
category=scenario["category"],
|
|
error_message=scenario.get("error_message"),
|
|
quality_metrics=scenario.get("quality")
|
|
)
|
|
reporter.add_test_result(result)
|
|
|
|
# Generate HTML report
|
|
html_content = reporter.generate_report()
|
|
|
|
# Validate report content
|
|
assert "Video Processor Test Report" in html_content
|
|
assert "test_video_encoding_h264" in html_content
|
|
assert "test_360_video_processing" in html_content
|
|
assert "test_streaming_integration" in html_content
|
|
assert "test_ai_analysis_smoke" in html_content
|
|
|
|
# Check for video theme elements
|
|
assert "--bg-primary: #0d1117" in html_content # Dark theme
|
|
assert "video-accent" in html_content # Video accent color
|
|
assert "Quality Metrics Overview" in html_content
|
|
assert "Test Analytics & Trends" in html_content
|
|
|
|
# Save report to temp file for manual inspection
|
|
temp_dir = Path(tempfile.mkdtemp())
|
|
report_path = temp_dir / "demo_report.html"
|
|
with open(report_path, "w") as f:
|
|
f.write(html_content)
|
|
|
|
print(f"✅ HTML report generation test completed")
|
|
print(f" Report saved to: {report_path}")
|
|
|
|
# Cleanup
|
|
shutil.rmtree(temp_dir, ignore_errors=True)
|
|
|
|
|
|
@pytest.mark.performance
|
|
def test_performance_simulation():
|
|
"""Simulate performance testing with benchmarks."""
|
|
tracker = QualityMetricsCalculator("performance_simulation")
|
|
|
|
# Simulate different encoding scenarios
|
|
encoding_tests = [
|
|
{"codec": "h264", "resolution": "720p", "target_fps": 15.0, "actual_fps": 18.2},
|
|
{"codec": "h264", "resolution": "1080p", "target_fps": 8.0, "actual_fps": 9.5},
|
|
{"codec": "h265", "resolution": "720p", "target_fps": 6.0, "actual_fps": 7.1},
|
|
{"codec": "webm", "resolution": "1080p", "target_fps": 6.0, "actual_fps": 5.8},
|
|
]
|
|
|
|
for test in encoding_tests:
|
|
# Check if performance meets benchmark
|
|
meets_benchmark = test["actual_fps"] >= test["target_fps"]
|
|
tracker.record_assertion(
|
|
meets_benchmark,
|
|
f"{test['codec']} {test['resolution']} encoding performance"
|
|
)
|
|
|
|
# Record video processing metrics
|
|
tracker.record_video_processing(
|
|
input_size_mb=60.0 if "1080p" in test["resolution"] else 30.0,
|
|
duration=2.0,
|
|
output_quality=8.0 + (test["actual_fps"] / test["target_fps"])
|
|
)
|
|
|
|
metrics = tracker.finalize()
|
|
print(f"✅ Performance simulation completed - Score: {metrics.overall_score:.1f}/10")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Run tests using pytest
|
|
import sys
|
|
sys.exit(pytest.main([__file__, "-v", "--tb=short"])) |