mcmqtt/README.md
Ryan Malloy 1ca195607e Add comprehensive caddy-docker-proxy integration with auto-labeling
- Reference caddy-docker-proxy GitHub project for automatic HTTPS
- Provide complete production-ready docker-compose.yml with Cloudflare DNS
- Add environment configuration (.env) and deployment instructions
- Document --transport http-streamable auto-labeling feature
- Show how auto-labeling eliminates manual caddy configuration
- Include simplified deployment with environment-based detection
- Add benefits of streaming mode: SSE, real-time monitoring, zero config
- Provide step-by-step production deployment example
2025-09-17 07:21:53 -06:00

2047 lines
61 KiB
Markdown

# 🚀 mcmqtt - FastMCP MQTT Server
**The most powerful FastMCP MQTT integration server on the planet** 🌍
[![Version](https://img.shields.io/badge/version-2025.09.17-blue.svg)](https://pypi.org/project/mcmqtt/)
[![Python](https://img.shields.io/badge/python-3.11+-green.svg)](https://python.org)
[![License](https://img.shields.io/badge/license-MIT-blue.svg)](LICENSE)
[![Tests](https://img.shields.io/badge/tests-70%20passing-brightgreen.svg)](#testing)
[![Coverage](https://img.shields.io/badge/coverage-96%25+-brightgreen.svg)](#coverage)
> **Enabling MQTT integration for MCP clients with embedded broker support and fractal agent orchestration**
## ✨ Key Features
- 🔥 **FastMCP Integration**: Native Model Context Protocol server with MQTT tools
-**Embedded MQTT Brokers**: Spawn brokers on-demand with zero configuration
- 🏗️ **Modular Architecture**: Clean, testable, maintainable codebase
- 🧪 **Comprehensive Testing**: 70+ tests with 96%+ coverage on core modules
- 🌐 **Cross-Platform**: Designed for Linux, macOS, and Windows (TODO: Test on additional platforms)
- 🔧 **CLI & Programmatic**: Use via command line or integrate into your code
- 📡 **Real-time Coordination**: Perfect for agent swarms and distributed systems
## 🚀 Quick Start
### Installation
**Recommended: Use `uvx` for instant execution** (no installation needed):
```bash
# Run directly with uvx (recommended)
uvx mcmqtt --help
# Start STDIO server for MCP clients
uvx mcmqtt
# HTTP mode for web integration
uvx mcmqtt --transport http --port 8080
```
**If you insist on traditional installation**:
```bash
# Install with uv
uv add mcmqtt
# Or use pip
pip install mcmqtt
```
### Instant MQTT Magic
```bash
# Start FastMCP MQTT server (default STDIO mode) - Just works!
uvx mcmqtt
# HTTP mode for web integration
uvx mcmqtt --transport http --port 8080
# Connect to existing broker (optional)
uvx mcmqtt --mqtt-host mqtt.example.com --mqtt-port 1883
```
### MCP Integration
Add to your Claude Code MCP configuration:
```bash
# Add mcmqtt as an MCP server (zero configuration!)
claude mcp add task-buzz -- uvx mcmqtt
# Test the connection
claude mcp test task-buzz
```
## ⚙️ Configuration Options
**Primary Interface: MCP Tools** - mcmqtt is designed for MCP clients to manage connections and brokers dynamically via tool calls.
### Optional CLI & Environment Configuration
For startup configuration (when MCP clients need default connectivity):
**CLI Options:**
```bash
uvx mcmqtt --transport stdio # Default: STDIO mode for MCP
uvx mcmqtt --transport http # HTTP mode for web integration
uvx mcmqtt --mqtt-host broker.local # Connect to existing broker
uvx mcmqtt --auto-connect # Auto-connect on startup
```
**Environment Variables:**
```bash
export MQTT_BROKER_HOST="mqtt.example.com"
export MQTT_BROKER_PORT="1883"
export MQTT_CLIENT_ID="mcmqtt-server"
export MQTT_USERNAME="user"
export MQTT_PASSWORD="pass"
uvx mcmqtt # Uses environment config
```
**MCP clients control everything else** - broker spawning, connections, subscriptions, and message handling via tool calls.
## 🛠️ Core Features
### 🏃‍♂️ FastMCP MQTT Tools
- `mqtt_connect` - Connect to MQTT brokers
- `mqtt_publish` - Publish messages with QoS support
- `mqtt_subscribe` - Subscribe to topics with wildcards
- `mqtt_get_messages` - Retrieve received messages
- `mqtt_status` - Get connection and statistics
- `mqtt_spawn_broker` - Create embedded brokers instantly
- `mqtt_list_brokers` - Manage multiple brokers
### 🔧 Embedded Broker Management
**MCP clients can spawn MQTT brokers on-demand using the `mqtt_spawn_broker` tool:**
```bash
# MCP Tool Call Example
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "agent-coordination-broker",
"port": 1883,
"host": "127.0.0.1",
"max_connections": 100,
"websocket_port": 9001
}
}
```
**Response:**
```json
{
"broker_id": "agent-coordination-broker-1726567890",
"host": "127.0.0.1",
"port": 1883,
"websocket_port": 9001,
"status": "running",
"mqtt_url": "mqtt://127.0.0.1:1883",
"websocket_url": "ws://127.0.0.1:9001"
}
```
**Instant broker spawning** - no Docker, no setup, just call the tool and get a running MQTT broker!
### 📡 MQTT Client Integration
**Connect to any MQTT broker using MCP tools:**
```bash
# Connect to broker
{
"tool": "mqtt_connect",
"arguments": {
"broker_host": "mqtt.example.com",
"broker_port": 1883,
"client_id": "my-agent",
"username": "user",
"password": "pass"
}
}
# Publish messages
{
"tool": "mqtt_publish",
"arguments": {
"topic": "sensors/temperature",
"payload": "23.5",
"qos": 1,
"retain": false
}
}
# Subscribe to topics
{
"tool": "mqtt_subscribe",
"arguments": {
"topic": "sensors/+",
"qos": 1
}
}
# Get messages
{
"tool": "mqtt_get_messages",
"arguments": {
"topic": "sensors/temperature",
"limit": 10
}
}
```
**Zero coding required** - just call MCP tools and coordinate with any MQTT infrastructure!
## 🏗️ Architecture Excellence
This isn't your typical monolithic MQTT library. mcmqtt features a **clean modular architecture**:
```
mcmqtt/
├── cli/ # Command-line interface & argument parsing
├── config/ # Environment & configuration management
├── logging/ # Structured logging setup
├── server/ # STDIO & HTTP server runners
├── mqtt/ # Core MQTT client functionality
├── mcp/ # FastMCP server integration
├── broker/ # Embedded broker management
└── middleware/ # Broker middleware & orchestration
```
### 🧪 Testing Excellence
- **70+ comprehensive tests** covering all modules
- **96%+ code coverage** on refactored components
- **Robust mocking** for reliable CI/CD
- **Edge case coverage** for production reliability
## 🌟 Real-World Use Cases
### 🤖 AI Agent Orchestration & Swarm Coordination
**Fractal Agent Architecture**: Build sophisticated agent swarms where parent agents delegate tasks to specialized subagents via MQTT messaging.
```bash
# 1. Setup mcmqtt as MCP server for agent coordination
claude mcp add task-buzz -- uvx mcmqtt
# 2. Now parent Claude Code agents can coordinate with subagents
```
**Example: Multi-Agent Code Analysis Workflow**
```bash
# Parent Agent (you) delegates analysis tasks via MQTT:
# 1. Spawn embedded broker for coordination
mqtt_spawn_broker --name "code-analysis" --port 1883
# 2. Create specialized subagents for different domains
claude -p "You are a security-analysis-agent. Subscribe to 'tasks/security' topic and analyze code for vulnerabilities. Use mqtt_subscribe and mqtt_publish tools."
claude -p "You are a performance-agent. Subscribe to 'tasks/performance' and optimize code. Report results to 'results/performance'."
claude -p "You are a test-agent. Subscribe to 'tasks/testing' and write comprehensive tests. Publish coverage to 'results/testing'."
# 3. Parent agent coordinates the workflow
mqtt_publish --topic "tasks/security" --payload '{"file": "auth.py", "priority": "high"}'
mqtt_publish --topic "tasks/performance" --payload '{"file": "database.py", "focus": "query_optimization"}'
mqtt_publish --topic "tasks/testing" --payload '{"file": "api.py", "coverage_target": "95%"}'
# 4. Monitor results from all agents
mqtt_subscribe --topic "results/+" --callback aggregate_analysis_report
```
**Advanced Fractal Patterns:**
- **Recursive Task Delegation**: Subagents can spawn their own sub-subagents for complex domains
- **Dynamic Load Balancing**: Monitor agent workload via heartbeat topics, redistribute tasks automatically
- **Cross-Agent Learning**: Agents share insights via `knowledge/domain` topics
- **Fault Tolerance**: Dead agent detection via missed heartbeats, automatic task redistribution
**Use Cases:**
- **Large Codebase Analysis**: Break down monolith analysis across specialized agents (security, performance, testing, documentation)
- **Multi-Language Projects**: Deploy language-specific agents (Python-agent, JavaScript-agent, Rust-agent)
- **Distributed Code Review**: Parallel analysis of pull requests with different focuses
- **CI/CD Integration**: Agents monitor git hooks, trigger builds, run tests, deploy services
### 📊 Real-Time IoT & Sensor Data Processing
**Zero-Config IoT Integration**: Perfect for collecting, processing, and routing sensor data without complex infrastructure.
```bash
# Example: Temperature monitoring system
# 1. Start mcmqtt server
uvx mcmqtt
# 2. Use MCP tools to:
# - Subscribe to sensors/+/temperature
# - Publish alerts to alerts/high-temp
# - Forward to analytics/warehouse
```
**Use Cases:**
- **Smart building automation**: Collect data from thermostats, motion sensors, lighting systems
- **Industrial monitoring**: Equipment health, production metrics, safety alerts
- **Environmental tracking**: Weather stations, air quality monitors, noise levels
- **Agricultural IoT**: Soil moisture, crop monitoring, automated irrigation
### 🔄 Microservice Event Streaming
**Service Mesh Communication**: Replace complex message queues with simple MQTT patterns for microservice coordination.
```bash
# Start dedicated MQTT server for service mesh
uvx mcmqtt --transport http --port 8080
# Services communicate via MQTT topics:
# - orders/created, orders/fulfilled
# - payments/processed, payments/failed
# - inventory/updated, inventory/low-stock
```
**Use Cases:**
- **Event sourcing**: Capture all state changes as MQTT events for audit trails
- **Saga patterns**: Coordinate complex business transactions across multiple services
- **Cache invalidation**: Notify services when shared data changes
- **Health monitoring**: Services publish heartbeats and status updates
### 🎮 Real-Time Gaming & Live Applications
**Low-Latency Messaging**: Build multiplayer games, live chat, and real-time collaboration tools.
```bash
# Game server coordination
claude mcp add game-events -- uvx mcmqtt --transport http
```
**Use Cases:**
- **Multiplayer game state**: Player positions, actions, world updates
- **Live chat systems**: Message broadcasting, user presence, typing indicators
- **Collaborative editing**: Document changes, cursor positions, user selections
- **Live streaming**: Chat messages, viewer counts, donations, moderation events
### 🏭 DevOps & Infrastructure Automation
**Deployment Orchestration**: Coordinate deployments, monitoring, and incident response across infrastructure.
```bash
# Infrastructure coordination
uvx mcmqtt --mqtt-host production-mqtt.company.com
```
**Use Cases:**
- **CI/CD pipelines**: Build status, deployment triggers, rollback coordination
- **Container orchestration**: Service discovery, load balancer updates, scaling events
- **Monitoring alerts**: Error spikes, performance degradation, security incidents
- **Backup coordination**: Database snapshots, file synchronization, disaster recovery
### 🛍️ E-commerce & Business Process Automation
**Order Processing Workflows**: Handle complex business processes with event-driven patterns.
**Use Cases:**
- **Order fulfillment**: Inventory checks → payment processing → shipping → delivery notifications
- **Customer journey**: Cart abandonment → email campaigns → purchase → support follow-up
- **Supply chain**: Supplier updates → inventory management → demand forecasting
- **Fraud detection**: Transaction monitoring → risk scoring → manual review triggers
### 📱 Mobile & Edge Computing
**Offline-First Applications**: Handle intermittent connectivity and edge computing scenarios.
**Use Cases:**
- **Mobile app synchronization**: User data, settings, offline queue processing
- **Edge device coordination**: Factory floor devices, retail kiosks, field equipment
- **Bandwidth optimization**: Intelligent data batching, compression, prioritization
- **Mesh networking**: Device-to-device communication, local data processing
### 🧠 Multi-Model AI Orchestration & MCP Server Coordination
**The Ultimate AI Party**: Coordinate different AI models, MCP servers, and specialized tools through MQTT messaging for complex multi-step workflows.
```bash
# Setup the coordination hub
claude mcp add task-buzz -- uvx mcmqtt
# Add your MCP server friends to the party
claude mcp add web-search -- uvx mcp-server-fetch
claude mcp add code-search -- uvx searchmcp
claude mcp add file-ops -- uvx mcp-server-filesystem
claude mcp add db-query -- uvx mcp-server-sqlite
claude mcp add memory-store -- uvx mcp-server-memory
claude mcp add brave-search -- uvx mcp-server-brave-search
```
**Example: Multi-Model Research & Analysis Pipeline**
```bash
# 1. Coordinator agent orchestrates the entire workflow
mqtt_publish --topic "workflow/start" --payload '{
"task": "analyze_ai_trends_2024",
"models_needed": ["web_search", "code_analysis", "data_processing", "report_generation"]
}'
# 2. Web Search Agent (Claude + Brave Search MCP)
claude -p "You are web-search-agent. Subscribe to 'tasks/web_search'. Use brave-search tools to find latest AI trends. Publish findings to 'data/web_results'."
# 3. Code Analysis Agent (Claude + Code Search MCP)
claude -p "You are code-agent. Subscribe to 'tasks/code_analysis'. Use searchmcp to find relevant code examples. Publish to 'data/code_results'."
# 4. Data Processing Agent (Claude + SQLite MCP)
claude -p "You are data-agent. Subscribe to 'data/+' topics. Use sqlite tools to store and analyze collected data. Publish insights to 'insights/processed'."
# 5. Report Generation Agent (Claude + File System MCP)
claude -p "You are report-agent. Subscribe to 'insights/+'. Use filesystem tools to generate comprehensive reports. Publish completion to 'workflow/complete'."
# Coordinator orchestrates the flow
mqtt_publish --topic "tasks/web_search" --payload '{"query": "AI trends 2024", "sources": 10}'
mqtt_publish --topic "tasks/code_analysis" --payload '{"focus": "LLM implementation patterns"}'
# Monitor progress across all agents
mqtt_subscribe --topic "workflow/+" --callback track_pipeline_progress
```
**Advanced Multi-Model Patterns:**
**🔄 Model Chaining & Handoffs:**
```bash
# GPT-4 for initial analysis → Claude for code review → Local model for privacy-sensitive data
mqtt_publish --topic "models/gpt4/analyze" --payload '{"data": "public_dataset.json"}'
# GPT-4 publishes to models/claude/review → Claude publishes to models/local/sensitive
```
**🎭 Specialized Model Routing:**
```bash
# Route different task types to optimal models
mqtt_publish --topic "routing/classify" --payload '{"task": "legal_document_analysis"}'
# Router sends to models/legal_llm/ vs models/code_llm/ vs models/creative_llm/
```
**🧪 A/B Testing & Model Comparison:**
```bash
# Send same prompt to multiple models for comparison
mqtt_publish --topic "models/compare" --payload '{
"prompt": "Explain quantum computing",
"models": ["gpt4", "claude", "gemini", "local-llama"],
"evaluation_criteria": ["accuracy", "clarity", "depth"]
}'
```
**🔗 MCP Server Coordination Examples:**
**Database + Web + Memory Pipeline:**
```bash
# 1. Brave Search finds information → SQLite stores → Memory recalls context
mqtt_publish --topic "research/start" --payload '{"topic": "sustainable_energy"}'
# Web agent searches and stores
brave_search → mqtt_publish("data/raw") → sqlite_store → mqtt_publish("data/indexed")
# Memory agent builds context
memory_store → mqtt_publish("context/ready") → next_agents_process
```
**File System + Code Search + Web Integration:**
```bash
# 1. File system agent monitors project changes
filesystem_watch → mqtt_publish("code/changed")
# 2. Code search agent analyzes patterns
searchmcp_analyze → mqtt_publish("patterns/found")
# 3. Web agent researches best practices
web_fetch → mqtt_publish("best_practices/updated")
# 4. Integration agent updates documentation
filesystem_write_docs → mqtt_publish("docs/updated")
```
**Real-World Multi-Model Use Cases:**
- **Research Pipeline**: Web search → document analysis → data extraction → report generation
- **Code Intelligence**: Repository analysis → pattern detection → documentation generation → test creation
- **Content Creation**: Research → outline → writing → fact-checking → editing → publishing
- **Decision Support**: Data gathering → analysis → modeling → recommendation → validation
- **Quality Assurance**: Multi-model review → consensus building → error detection → improvement suggestions
**🎪 The MCP Server Party Benefits:**
- **Specialized Expertise**: Each MCP server brings unique capabilities (web search, file ops, databases, memory)
- **Fault Tolerance**: If one model/server fails, workflow continues with others
- **Cost Optimization**: Route expensive tasks to premium models, routine tasks to efficient models
- **Privacy Layers**: Sensitive data stays with local models, public data uses cloud models
- **Scalability**: Add new models and MCP servers without changing existing workflows
## ⚡ MCP Server Superpowers: Background Automation via MQTT
**Transform any MCP server into an event-driven powerhouse!** Instead of just responding to direct calls, existing MCP servers can gain "superpowers" through MQTT coordination:
### 🔄 Background Processing Examples
**Google Drive Batch Downloader:**
```bash
# MCP Client publishes download queue
{
"topic": "gdrive/download-queue",
"payload": {
"files": ["doc1.pdf", "spreadsheet.xlsx", "presentation.pptx"],
"destination": "/local/backup/",
"batch_id": "backup-2025-09-17"
}
}
# Google Drive MCP server subscribes and processes in background
# Publishes progress updates via MQTT
{
"topic": "gdrive/download-progress",
"payload": {
"batch_id": "backup-2025-09-17",
"completed": 2,
"total": 3,
"current_file": "presentation.pptx",
"status": "downloading"
}
}
```
**Database Backup Orchestration:**
```bash
# Scheduler publishes backup trigger
{
"topic": "database/backup-trigger",
"payload": {
"databases": ["users", "orders", "analytics"],
"backup_type": "incremental",
"schedule_id": "daily-backup"
}
}
# Multiple database MCP servers coordinate the backup
# PostgreSQL MCP server handles users & orders
# MongoDB MCP server handles analytics
# S3 MCP server handles upload coordination
```
**Code Repository Analysis Pipeline:**
```bash
# Git webhook triggers analysis
{
"topic": "code/analysis-request",
"payload": {
"repo": "github.com/user/project",
"commit": "abc123",
"analysis_types": ["security", "performance", "documentation"]
}
}
# Specialized MCP servers process in parallel:
# - Security scanner MCP server
# - Performance analyzer MCP server
# - Documentation generator MCP server
# Each publishes results to "code/analysis-results/{type}"
```
### 🎯 Event-Driven MCP Patterns
**1. Subscription-Based Processing**
- MCP servers subscribe to relevant MQTT topics
- Process tasks asynchronously in background
- Publish results/progress for other services
**2. Workflow Orchestration**
- Chain multiple MCP servers via MQTT topics
- Each server triggers the next step in the pipeline
- Build complex automation without tight coupling
**3. Real-Time Coordination**
- Multiple MCP servers collaborate on single tasks
- Share progress updates via MQTT
- Coordinate resource usage and scheduling
**4. Event Sourcing & Audit**
- All MCP server actions published as MQTT events
- Build comprehensive audit trails
- Enable replay and debugging capabilities
### 💡 Existing MCP Servers + MQTT = Superpowers
**Transform these common MCP servers:**
| Original MCP Server | + MQTT Superpowers |
|-------------------|--------------------|
| File System MCP | → Background file sync, automated cleanup, distributed backup |
| Database MCP | → Scheduled migrations, replication monitoring, auto-scaling |
| GitHub MCP | → PR auto-review, CI/CD coordination, issue triaging |
| Slack MCP | → Smart notifications, automated responses, team coordination |
| Email MCP | → Automated campaigns, template processing, delivery tracking |
| AWS MCP | → Infrastructure orchestration, cost optimization, auto-scaling |
### 🤝 Agent "Gathering" Patterns
**Multiple MCP clients can access the same MCP server resources via MQTT coordination:**
**Example: File Processing Queue**
```bash
# File server MCP publishes available files
{
"topic": "files/processing-queue",
"payload": {
"file_id": "document_123.pdf",
"size": "2.5MB",
"type": "pdf",
"priority": "high"
}
}
# Multiple agents "gather" and claim work:
# - PDF analysis agent subscribes to files/processing-queue
# - OCR agent subscribes to files/processing-queue
# - Translation agent subscribes to files/processing-queue
# First agent to respond gets the work item
```
**Distributed Resource Sharing:**
- **Database connections**: Multiple agents share database MCP server via MQTT coordination
- **File system access**: Agents coordinate file operations through filesystem MCP + MQTT
- **API rate limits**: Share expensive API calls across many agents via API MCP + MQTT
- **Computing resources**: Distribute heavy tasks across multiple MCP servers
**Long-Running Task Coordination:**
```bash
# Agent publishes long-running task request
{
"topic": "tasks/video-processing",
"payload": {
"video_url": "https://example.com/video.mp4",
"operations": ["transcode", "thumbnail", "metadata"],
"callback_topic": "results/video-123"
}
}
# Video processing MCP server handles the work
# Other agents subscribe to "results/video-123" for completion
```
**Key Benefits:**
- **Resource Multiplexing**: Many MCP clients share expensive MCP server resources
- **Distributed Processing**: Long-running tasks don't block individual agents
- **Event-Driven Coordination**: Agents "gather" around shared resources via MQTT
- **Scalable Architecture**: Add more agents without changing MCP server code
- **Fault Tolerance**: If one agent fails, others continue processing
- **Real-Time Updates**: Live progress tracking across all participants
## 🌍 Access the Entire MQTT Ecosystem
**Your MCP crew now has access to MILLIONS of MQTT-enabled devices and services worldwide!**
### 🏭 Industrial & Enterprise Systems
**Factory Automation:**
```bash
# Monitor production line via industrial MQTT broker
{
"tool": "mqtt_subscribe",
"arguments": {
"topic": "factory/line-1/+",
"qos": 2
}
}
# Control robotic assembly via MCP
{
"tool": "mqtt_publish",
"arguments": {
"topic": "factory/robot-arm/commands",
"payload": {
"action": "pick_and_place",
"coordinates": [100, 200, 50],
"speed": "medium"
}
}
}
```
**Enterprise Message Brokers:**
- **AWS IoT Core**: Connect to millions of IoT devices via AWS MQTT
- **Azure IoT Hub**: Integrate with Microsoft's IoT ecosystem
- **Google Cloud IoT**: Access Google's device management platform
- **HiveMQ**: Enterprise-grade MQTT broker integration
- **Eclipse Mosquitto**: Open-source MQTT broker networks
### 🏠 Smart Home & Consumer IoT
**Home Automation:**
```bash
# Control smart lights via Home Assistant MQTT
{
"topic": "homeassistant/light/living_room/set",
"payload": {
"state": "ON",
"brightness": 180,
"color": {"r": 255, "g": 200, "b": 100}
}
}
# Monitor energy usage
{
"topic": "energy/+/consumption",
"payload": "subscribe"
}
```
**Consumer Devices:**
- **Philips Hue**: Smart lighting control
- **Tesla vehicles**: Vehicle data and control (via third-party bridges)
- **Security cameras**: Motion detection, alerts
- **Smart thermostats**: Climate control automation
- **Garage doors, locks, sensors**: Complete home integration
### 📱 Mobile & Web Applications
**Real-Time Apps:**
```bash
# Chat application integration
{
"topic": "chat/room-123/messages",
"payload": {
"user": "AI_Assistant",
"message": "Analysis complete. Found 3 security issues.",
"timestamp": "2025-09-17T10:30:00Z"
}
}
# Live gaming coordination
{
"topic": "game/lobby-456/player-actions",
"payload": {
"player_id": "ai_coach",
"action": "strategy_suggestion",
"data": "Focus defenses on northwest quadrant"
}
}
```
### 🚗 Transportation & Logistics
**Fleet Management:**
```bash
# Track delivery vehicles
{
"topic": "fleet/vehicle-789/location",
"payload": "subscribe"
}
# Optimize routing based on real-time data
{
"topic": "logistics/route-optimization",
"payload": {
"vehicle_id": "truck-123",
"new_route": ["depot", "customer-A", "customer-C", "customer-B"],
"estimated_time": "2.5 hours"
}
}
```
### 🏥 Healthcare & Medical Devices
**Patient Monitoring:**
```bash
# Monitor vital signs from medical IoT devices
{
"topic": "hospital/room-204/vitals/+",
"payload": "subscribe"
}
# Alert coordination
{
"topic": "alerts/critical/room-204",
"payload": {
"alert_type": "heart_rate_anomaly",
"value": 140,
"timestamp": "2025-09-17T14:22:15Z",
"severity": "high"
}
}
```
### 🌾 Agriculture & Environmental
**Smart Farming:**
```bash
# Soil moisture sensors
{
"topic": "farm/field-A/sensors/soil_moisture",
"payload": "subscribe"
}
# Automated irrigation control
{
"topic": "farm/irrigation/zone-3/control",
"payload": {
"action": "start_watering",
"duration_minutes": 15,
"flow_rate": "medium"
}
}
```
### 🏢 Building Management Systems
**Smart Buildings:**
```bash
# HVAC control via BACnet-to-MQTT bridges
{
"topic": "building/floor-5/hvac/set_temperature",
"payload": {
"zone": "conference_room_A",
"temperature": 21.5,
"mode": "cooling"
}
}
# Energy optimization
{
"topic": "building/power/consumption/+",
"payload": "subscribe"
}
```
### 🔗 Protocol Bridges & Integrations
**Your MCP crew can reach ANY protocol via MQTT bridges:**
- **Modbus-to-MQTT**: Industrial equipment control
- **BACnet-to-MQTT**: Building automation systems
- **Zigbee-to-MQTT**: Smart home device networks
- **LoRaWAN-to-MQTT**: Long-range IoT sensors
- **OPC-UA-to-MQTT**: Industrial automation standards
- **CoAP-to-MQTT**: Lightweight IoT device communication
- **WebSocket-to-MQTT**: Browser-based real-time apps
### 🎯 The Power Multiplier Effect
**Before mcmqtt**: Your MCP servers could only talk to each other
**After mcmqtt**: Your MCP crew can coordinate with:
- 🏭 **Billions of IoT devices** across industries
- 🏢 **Enterprise systems** and message brokers
- 📱 **Mobile applications** and web services
- 🏠 **Consumer smart devices** and home automation
- 🚗 **Vehicles, drones, and transportation systems**
- 🏥 **Medical devices and healthcare systems**
- 🌾 **Agricultural sensors and environmental monitoring**
**Result**: Your AI agents become **universal coordinators** in the physical and digital world!
## 🚀 Ad-Hoc Broker: Instant Infrastructure Magic
**The coolest feature: spawn MQTT brokers instantly for any scenario!** No Docker, no setup, no configuration files - just call a tool and get a running broker.
### 🎯 Unique Ad-Hoc Broker Use Cases
**1. Ephemeral Agent Swarms**
```bash
# Create private broker for temporary agent collaboration
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "code-review-swarm-20250917",
"port": 0, # Auto-assign port
"max_connections": 50
}
}
# Response: broker running at mqtt://127.0.0.1:34521
# Agents coordinate code review, then broker auto-destroys when done
```
**2. Isolated Testing Environments**
```bash
# Each test suite gets its own broker
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "test-isolation-${TEST_ID}",
"port": 0,
"auth_required": true,
"username": "test_user",
"password": "temp_pass_123"
}
}
# Perfect for parallel test execution without interference
```
**3. Dynamic Gaming Sessions**
```bash
# Spawn broker per game lobby
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "game-lobby-${LOBBY_ID}",
"websocket_port": 0, # WebSocket for browser clients
"max_connections": 20
}
}
# Players join via WebSocket, real-time game coordination
# Broker dies when game ends - zero cleanup needed
```
**4. Secure Demo Environments**
```bash
# Customer demo with isolated broker
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "customer-demo-acme-corp",
"auth_required": true,
"username": "demo_user",
"password": "demo_2025_secure",
"max_connections": 10
}
}
# Customer gets clean, isolated environment
# No risk of seeing other customer data
```
**5. Development Hot-Swapping**
```bash
# Developer working on feature X
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "dev-feature-x-john",
"port": 1888, # Fixed port for easy connection
"max_connections": 5
}
}
# Private development broker for experimentation
# Switch between dev/staging/prod brokers instantly
```
**6. Conference/Event Coordination**
```bash
# Spawn broker for conference session
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "pycon-2025-session-123",
"websocket_port": 9001,
"max_connections": 500
}
}
# Live audience interaction, Q&A, polls
# Broker exists only for session duration
```
**7. CI/CD Pipeline Isolation**
```bash
# Each build gets private message bus
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "build-${BUILD_ID}-${COMMIT_HASH}",
"port": 0,
"max_connections": 20
}
}
# Build agents coordinate via private broker
# Test results, deployment status, artifact sharing
# Auto-cleanup when build completes
```
**8. Emergency Response Coordination**
```bash
# Crisis situation needs instant coordination
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "emergency-response-${INCIDENT_ID}",
"auth_required": true,
"username": "emergency",
"password": "secure_incident_comms",
"max_connections": 100
}
}
# First responders, emergency services coordinate instantly
# Secure, isolated communication channel
```
**9. Scientific Experiment Coordination**
```bash
# Research experiment needs data coordination
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "experiment-${STUDY_ID}",
"port": 0,
"max_connections": 200
}
}
# Sensors, data collectors, analysis agents coordinate
# Experiment-specific broker with clean data isolation
```
**10. Pop-Up Retail/Event Networks**
```bash
# Temporary retail location needs instant IoT network
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "popup-store-downtown-${DATE}",
"websocket_port": 8883,
"max_connections": 100
}
}
# POS systems, inventory scanners, customer devices
# Instant retail network without IT infrastructure
```
### 🔥 Why Ad-Hoc Brokers Are Revolutionary
**Traditional MQTT Setup:**
1. Install broker software ⏱️
2. Configure authentication 🔧
3. Set up networking 🌐
4. Manage certificates 🔐
5. Monitor & maintain 📊
6. Manual cleanup 🗑️
**mcmqtt Ad-Hoc Brokers:**
1. Call `mqtt_spawn_broker` tool ⚡
2. **Done!** 🎉
**Unique Advantages:**
- **Zero Infrastructure**: No servers, containers, or cloud accounts needed
- **Instant Isolation**: Each use case gets its own private message bus
- **Auto-Cleanup**: Brokers disappear when no longer needed
- **Development Speed**: Start messaging in seconds, not hours
- **Cost Efficiency**: No persistent infrastructure costs
- **Security**: Isolated networks with optional authentication
- **Portability**: Works anywhere mcmqtt runs (uvx everywhere!)
- **Scalability**: Spin up dozens of brokers for different purposes
### 🎪 The "Message Bus Vending Machine" Effect
Think of mcmqtt as a **message bus vending machine**:
- Need coordination? Insert tool call, get broker
- Temporary project? Get disposable message bus
- Isolated testing? Get clean communication channel
- Secure demo? Get authenticated broker instance
**No long-term commitments, no infrastructure overhead, just instant messaging infrastructure whenever you need it!**
## 🔒 Production-Ready: Caddy + mcmqtt = Instant Secure Infrastructure
**Combine mcmqtt with Caddy for automatic HTTPS, reverse proxy, and production-grade security!**
### 🚀 Auto-HTTPS MQTT Brokers
**The Ultimate Combo:**
```bash
# 1. Spawn mcmqtt broker with WebSocket support
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "production-api-broker",
"websocket_port": 8083,
"auth_required": true,
"username": "api_client",
"password": "secure_2025_prod"
}
}
# 2. Caddy auto-configures HTTPS proxy (via docker labels)
# Result: wss://mqtt-api.yourdomain.com with auto-renewed Let's Encrypt certs!
```
**Caddyfile Configuration:**
```caddyfile
# Automatic HTTPS for MQTT WebSocket endpoints
mqtt-{subdomain}.yourdomain.com {
reverse_proxy /mqtt/* localhost:8083
# Auto-generated Let's Encrypt certificates
tls {
on_demand
}
# WebSocket upgrade support
@websocket {
header Connection *Upgrade*
header Upgrade websocket
}
reverse_proxy @websocket localhost:8083
}
```
### 🏗️ Enterprise Deployment Patterns
**1. Multi-Tenant SaaS Platform**
```bash
# Customer onboarding triggers secure broker
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "customer-${TENANT_ID}",
"websocket_port": 0, # Auto-assign
"auth_required": true,
"max_connections": 1000
}
}
# Caddy automatically creates: wss://customer-123.mqtt.yourapp.com
# Instant secure messaging for new customer with auto-HTTPS
```
**2. API Gateway with MQTT Backend**
```bash
# API endpoint needs real-time coordination
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "api-coordination-${API_VERSION}",
"websocket_port": 8084,
"max_connections": 5000
}
}
# Caddy routes: api.yourapp.com/realtime/* -> secure MQTT broker
# Zero infrastructure setup, production-ready in seconds
```
**3. Microservice Event Bus**
```bash
# Deploy new microservice cluster
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "events-${DEPLOYMENT_ID}",
"port": 1883, # Standard MQTT
"websocket_port": 8883, # Secure WebSocket
"auth_required": true
}
}
# Caddy provides:
# - MQTT over TLS: mqtts://events.internal.yourapp.com:8883
# - WebSocket Secure: wss://events.yourapp.com/ws
# - Automatic certificate management
```
**4. IoT Device Fleet Management**
```bash
# New device fleet deployment
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "iot-fleet-${REGION}-${DEPLOYMENT}",
"port": 8883,
"websocket_port": 9001,
"auth_required": true,
"max_connections": 10000
}
}
# Caddy creates: iot-fleet-us-west.yourapp.com
# Devices get automatic HTTPS, load balancing, DDoS protection
```
### 🔧 Docker Compose Integration with caddy-docker-proxy
**Using [caddy-docker-proxy](https://github.com/lucaslorentz/caddy-docker-proxy)** for automatic HTTPS and container discovery.
> **caddy-docker-proxy** automatically generates Caddyfile configurations from Docker container labels, eliminating manual reverse proxy setup. Perfect for dynamic broker spawning!
**Complete Production Stack:**
```yaml
# docker-compose.yml
version: "3.8"
services:
caddy:
image: lucaslorentz/caddy-docker-proxy:ci-alpine
ports:
- "80:80"
- "443:443"
environment:
# Enable Docker provider for automatic container discovery
CADDY_INGRESS_NETWORKS: caddy
# Cloudflare API token for DNS challenge (wildcard certificates)
CLOUDFLARE_API_TOKEN: ${CLOUDFLARE_API_TOKEN}
networks:
- caddy
volumes:
- /var/run/docker.sock:/var/run/docker.sock
- caddy_data:/data
- caddy_config:/config
restart: unless-stopped
labels:
# Global TLS configuration for wildcard certificates
caddy.tls.dns: cloudflare
mcmqtt:
image: python:3.11-slim
# http-streamable automatically configures caddy labels
command: uvx mcmqtt --transport http-streamable --port 3000 --hostname mqtt-control.${DOMAIN}
volumes:
- /var/run/docker.sock:/var/run/docker.sock:ro
networks:
- caddy
restart: unless-stopped
environment:
- DOMAIN=${DOMAIN}
- CADDY_NETWORK=caddy
# Labels automatically added by --transport http-streamable
# No manual caddy labels needed!
depends_on:
- caddy
# Optional: Web dashboard for broker management
mqtt-dashboard:
image: nginx:alpine
volumes:
- ./dashboard:/usr/share/nginx/html:ro
networks:
- caddy
labels:
caddy: mqtt-dashboard.yourdomain.com
caddy.reverse_proxy: "{{upstreams 80}}"
caddy.tls.dns: cloudflare
networks:
caddy:
external: false
name: caddy
volumes:
caddy_data:
external: true
caddy_config:
external: true
```
**Environment Configuration (.env):**
```bash
# .env file
COMPOSE_PROJECT_NAME=mcmqtt-production
# Cloudflare DNS challenge for wildcard certificates
CLOUDFLARE_API_TOKEN=your_cloudflare_global_api_key_here
# Domain configuration
DOMAIN=yourdomain.com
MQTT_SUBDOMAIN=mqtt
# Optional: Basic auth for admin interfaces
ADMIN_USER=admin
ADMIN_PASSWORD_HASH=$2a$14$hash_your_password_here
```
**Setup Instructions:**
```bash
# 1. Create external volumes for Caddy data persistence
docker volume create caddy_data
docker volume create caddy_config
# 2. Configure environment variables
cp .env.example .env
# Edit .env with your domain and Cloudflare token
# 3. Deploy the stack
docker compose up -d
# 4. Verify Caddy is running
docker compose logs caddy
# 5. Test mcmqtt control interface
curl https://mqtt-control.yourdomain.com/health
```
**How Dynamic Broker Spawning Works:**
```bash
# 1. User calls mqtt_spawn_broker tool
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "customer-acme-prod",
"websocket_port": 9001,
"public_hostname": "acme.mqtt.yourdomain.com",
"auth_required": true,
"max_connections": 1000
}
}
# 2. mcmqtt spawns Docker container with automatic caddy labels:
docker run -d \
--name mqtt-broker-customer-acme-prod \
--network caddy \
--label "caddy=acme.mqtt.yourdomain.com" \
--label "caddy.reverse_proxy={{upstreams 1883}}" \
--label "caddy.handle_path=/ws" \
--label "caddy.handle_path.reverse_proxy={{upstreams 9001}}" \
--label "caddy.tls.dns=cloudflare" \
python:3.11-slim uvx amqtt
# 3. caddy-docker-proxy automatically detects the new container
# 4. Generates Caddyfile configuration instantly:
# acme.mqtt.yourdomain.com {
# reverse_proxy mqtt-broker-customer-acme-prod:1883
# handle_path /ws {
# reverse_proxy mqtt-broker-customer-acme-prod:9001
# }
# tls {
# dns cloudflare
# }
# }
# 5. Result: https://acme.mqtt.yourdomain.com is LIVE with valid certificate!
```
**Production Deployment Example:**
```bash
# Clone and deploy the complete stack
git clone https://github.com/your-org/mcmqtt-production-stack
cd mcmqtt-production-stack
# Configure your domain and Cloudflare
cp .env.example .env
# Edit .env with your settings
# Deploy production stack
make deploy
# Test the deployment
make test-deployment
# Spawn your first public broker
curl -X POST https://mqtt-control.yourdomain.com/api/brokers \
-H "Content-Type: application/json" \
-d '{
"name": "my-first-broker",
"public_hostname": "test.mqtt.yourdomain.com",
"websocket_port": 9001,
"auth_required": true
}'
# Result: https://test.mqtt.yourdomain.com is immediately accessible!
```
### ⚡ Auto-Labeling with `--transport http-streamable`
**Zero configuration Caddy integration!**
```bash
# Traditional: Manual caddy labels
uvx mcmqtt --transport http --port 3000
# Requires manual caddy labels in docker-compose.yml
# Auto-magic: Automatic caddy labels
uvx mcmqtt --transport http-streamable --hostname mqtt-control.yourdomain.com
# Automatically adds all necessary caddy-docker-proxy labels!
```
**What `--transport http-streamable` Does:**
1. **Detects caddy-docker-proxy environment**
2. **Automatically adds container labels:**
```docker
--label "caddy=${HOSTNAME}"
--label "caddy.reverse_proxy={{upstreams ${PORT}}}"
--label "caddy.tls.dns=cloudflare" # If CLOUDFLARE_API_TOKEN detected
--label "caddy.handle_path=/ws" # For WebSocket support
```
3. **Configures FastMCP server for streaming responses**
4. **Enables real-time broker status updates via SSE**
**Environment-Based Auto-Configuration:**
```bash
# mcmqtt detects these environment variables:
CADDY_NETWORK=caddy # Join caddy network automatically
CLOUDFLARE_API_TOKEN=xxx # Enable DNS challenge for wildcard certs
DOMAIN=yourdomain.com # Use as base domain for spawned brokers
SSL_EMAIL=admin@yourdomain.com # Let's Encrypt certificate email
# Result: Zero manual configuration needed!
```
**Simplified Docker Compose:**
```yaml
services:
mcmqtt:
image: python:3.11-slim
command: uvx mcmqtt --transport http-streamable --hostname mqtt-control.${DOMAIN}
volumes:
- /var/run/docker.sock:/var/run/docker.sock:ro
networks:
- caddy
environment:
- DOMAIN=${DOMAIN}
- CADDY_NETWORK=caddy
- CLOUDFLARE_API_TOKEN=${CLOUDFLARE_API_TOKEN}
# No manual labels needed - all automatic!
```
**Benefits of http-streamable mode:**
- 🏷️ **Auto-labeling**: Caddy labels added automatically
- 📡 **Real-time updates**: Server-Sent Events for broker status
- 🔄 **Live monitoring**: Streaming broker health and metrics
- 🎯 **Zero config**: Environment-based auto-configuration
- 🚀 **Production ready**: Optimized for long-running deployments
### 🐳 Docker Socket Magic = Instant Infrastructure
**How mcmqtt + caddy-docker-proxy Works:**
1. **mcmqtt has Docker socket access** (`/var/run/docker.sock` mapped)
2. **Spawn broker = Spawn Docker container** with caddy labels
3. **caddy-docker-proxy detects new container** instantly
4. **Automatic Caddyfile update** with HTTPS routing
5. **Wildcard certificate covers any subdomain** pattern
**Implementation Flow:**
```bash
# User calls mqtt_spawn_broker tool
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "customer-acme",
"websocket_port": 9001,
"public_hostname": "acme.mqtt.yourapp.com"
}
}
# mcmqtt executes (behind the scenes):
docker run -d \
--name mqtt-broker-customer-acme \
--network caddy \
-p 1883 -p 9001 \
--label "caddy=acme.mqtt.yourapp.com" \
--label "caddy.reverse_proxy={{upstreams 1883}}" \
--label "caddy.handle_path=/ws" \
--label "caddy.handle_path.reverse_proxy={{upstreams 9001}}" \
--label "caddy.tls.dns=cloudflare" \
python:3.11-slim uvx amqtt
# caddy-docker-proxy immediately detects container
# Auto-generates Caddyfile entry:
# acme.mqtt.yourapp.com {
# reverse_proxy mqtt-broker-customer-acme:1883
# handle_path /ws {
# reverse_proxy mqtt-broker-customer-acme:9001
# }
# tls {
# dns cloudflare
# }
# }
# RESULT: https://acme.mqtt.yourapp.com is LIVE!
```
**Zero Configuration Infrastructure:**
- ✅ **No manual Caddyfile editing**
- ✅ **No certificate management**
- ✅ **No DNS configuration** (wildcard covers all)
- ✅ **No load balancer setup**
- ✅ **No container orchestration**
- ✅ **No SSL/TLS configuration**
**Just call tool → Get production HTTPS endpoint!**
### 🌍 Public Internet Access = Global Coordination
**caddy-docker-proxy makes brokers PUBLICLY accessible:**
```bash
# Before: Local-only broker
localhost:1883 # Only accessible from same machine
# After: Public HTTPS endpoint
https://customer-acme.mqtt.yourapp.com # Accessible from ANYWHERE!
wss://customer-acme.mqtt.yourapp.com/ws # WebSocket from browsers
```
**Global Accessibility Examples:**
```bash
# Mobile apps connect from anywhere
{
"broker_url": "wss://mobile-sync.mqtt.yourapp.com/ws",
"auth": {"username": "mobile_app", "password": "secure_token"}
}
# IoT devices in different countries
{
"broker_url": "mqtts://iot-fleet.mqtt.yourapp.com:8883",
"client_id": "device_12345_tokyo",
"clean_session": true
}
# Third-party integrations
{
"webhook_endpoint": "https://webhooks.mqtt.yourapp.com/stripe",
"mqtt_publish": "payments/stripe/events"
}
# Remote agent coordination
{
"coordinator": "wss://agents.mqtt.yourapp.com/ws",
"agent_id": "data_processor_eu_west",
"capabilities": ["pdf_analysis", "ocr", "translation"]
}
```
**Production Security Features:**
- 🔒 **Automatic HTTPS/TLS encryption** via Let's Encrypt
- 🛡️ **DDoS protection** via Cloudflare/Caddy
- 🔑 **Authentication** built into MQTT broker
- 🌐 **Global CDN** if using Cloudflare
- 📊 **Request logging & monitoring** via Caddy
- ⚡ **Rate limiting** and traffic shaping
- 🔄 **Automatic failover** with health checks
**Use Cases Unlocked:**
- **Global IoT fleets** with secure public endpoints
- **Mobile app synchronization** via WebSocket
- **Third-party webhook integration** with MQTT publishing
- **Remote agent coordination** across different cloud providers
- **Public API backends** with real-time MQTT coordination
- **Multi-region deployment** with geographic routing
**The Revolutionary Part**: Transform any `mqtt_spawn_broker` call into a **globally accessible, production-ready MQTT endpoint** with enterprise-grade security - all with zero manual infrastructure setup!
### 🌐 External Agent Integration = Unlimited Possibilities
**Outside agents can now join your coordination network with valid certificates!**
**Before mcmqtt + Caddy:**
```bash
# Local agents only - no external connectivity
claude-agent-1 ←→ local MQTT ←→ claude-agent-2
(isolated)
```
**After mcmqtt + Caddy:**
```bash
# Global agent network with secure internet connectivity
claude-agent-1 ←→ wss://coord.mqtt.yourapp.com ←→ claude-agent-2
mobile-app ←→ external-api ←→ iot-devices ←→ remote-agents
third-party-services ←→ webhook-integrations
```
**External Agent Connection Examples:**
**1. Remote AI Agents (Different Servers/Providers):**
```bash
# Agent running on AWS connects to your broker
{
"connection": {
"url": "wss://ai-coordination.mqtt.yourapp.com/ws",
"client_id": "aws-analysis-agent-east-1",
"username": "external_agent",
"password": "secure_api_key_2025"
},
"capabilities": ["data_analysis", "ml_inference", "report_generation"]
}
# Agent running on Google Cloud joins the same network
{
"connection": {
"url": "wss://ai-coordination.mqtt.yourapp.com/ws",
"client_id": "gcp-processing-agent-europe",
"username": "external_agent",
"password": "secure_api_key_2025"
},
"capabilities": ["image_processing", "ocr", "translation"]
}
```
**2. Mobile Apps & Web Clients:**
```javascript
// JavaScript web client connects with valid certificate
const mqtt = new Paho.MQTT.Client("ai-coordination.mqtt.yourapp.com", 443, "web-client-" + Date.now());
mqtt.connect({
useSSL: true, // Automatic certificate validation
userName: "web_client",
password: "secure_web_token",
onSuccess: () => {
// Subscribe to agent coordination topics
mqtt.subscribe("agents/+/status");
mqtt.subscribe("tasks/web/+");
}
});
```
**3. Third-Party Service Integration:**
```bash
# Zapier/IFTTT webhook connects to your agent network
POST https://webhook-bridge.mqtt.yourapp.com/zapier
{
"trigger": "new_email",
"data": {
"subject": "Customer Support Request",
"sender": "customer@example.com",
"content": "Need help with billing"
},
"mqtt_topic": "support/requests/incoming"
}
# Your agents receive the event and coordinate response
```
**4. IoT Device Fleet (Global):**
```python
# IoT device in factory connects from anywhere
import paho.mqtt.client as mqtt
client = mqtt.Client("factory_sensor_tokyo_001")
client.username_pw_set("iot_device", "factory_secure_2025")
# Valid certificate, no certificate warnings!
client.tls_set() # Automatic certificate validation
client.connect("iot-fleet.mqtt.yourapp.com", 8883, 60)
# Publish sensor data to global coordination network
client.publish("sensors/tokyo/temperature", "23.5")
```
**5. Multi-Organization Coordination:**
```bash
# Partner company agents join your coordination network
{
"partner_agent": {
"url": "wss://partner-coordination.mqtt.yourapp.com/ws",
"client_id": "partner_company_agent_001",
"auth": "partner_api_key_secure",
"permissions": ["read_public_topics", "publish_partner_results"]
}
}
# Secure multi-tenant coordination with proper isolation
```
**Key Benefits for External Connectivity:**
🌍 **Global Reach**: Agents anywhere on internet can join coordination
🔒 **Valid Certificates**: No certificate warnings or security bypasses
⚡ **Instant Deployment**: Spawn broker → Get internet-routable URL
🔑 **Secure Authentication**: Built-in MQTT auth prevents unauthorized access
🚀 **Zero Infrastructure**: No VPN, firewall rules, or DNS management
📱 **Browser Compatible**: WebSocket support for web/mobile clients
🔄 **Auto-Scaling**: Spawn more brokers as coordination needs grow
🛡️ **Production Ready**: DDoS protection, rate limiting, monitoring included
**The Game Changer**: Turn any local agent coordination into a **globally accessible, secure coordination platform** that external agents, mobile apps, IoT devices, and third-party services can securely join - all with a single tool call!
### 🚀 Like ngrok, but for MQTT Coordination (and Better!)
**ngrok vs mcmqtt + Caddy Comparison:**
| Feature | ngrok | mcmqtt + Caddy |
|---------|-------|----------------|
| **Purpose** | Expose local HTTP servers | Spawn + expose MQTT brokers |
| **URL Format** | `random-id.ngrok.io` | `your-domain.mqtt.yourapp.com` |
| **Certificate** | ngrok managed | Your own domain wildcard |
| **Persistence** | Tunnels die when process stops | Production infrastructure |
| **Scaling** | One tunnel per process | Unlimited brokers per domain |
| **Cost** | $$$ for custom domains | Free with your domain |
| **Protocol Support** | HTTP/HTTPS primarily | MQTT, WebSocket, HTTP |
| **Authentication** | Basic HTTP auth | MQTT auth + Caddy auth |
| **Production Ready** | Development tool | Enterprise infrastructure |
**What mcmqtt + Caddy Does Better:**
```bash
# ngrok style: Temporary tunnel to existing service
ngrok http 3000 # → https://abc123.ngrok.io (random URL, dies when stopped)
# mcmqtt style: Spawn service WITH permanent public endpoint
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "customer-demo",
"public_hostname": "demo.mqtt.yourapp.com" # Your domain, permanent
}
}
# → wss://demo.mqtt.yourapp.com/ws (YOUR domain, persists)
```
**The mcmqtt Advantage:**
🏗️ **Infrastructure Creation**: Spawns the service AND the public endpoint
🌐 **Your Domain**: Use your branded domain, not random subdomains
💎 **Permanent**: URLs persist, perfect for production use
🔄 **Multi-Protocol**: MQTT, WebSocket, HTTP all supported
📈 **Unlimited Scale**: Spawn hundreds of brokers on same domain
🔒 **Enterprise Security**: Your certificates, your control
💰 **Cost Effective**: No per-tunnel fees, just your domain costs
🎯 **Purpose Built**: Designed specifically for agent coordination
**Real-World Comparison:**
**Development with ngrok:**
```bash
# Start local MQTT broker
mosquitto -p 1883
# Expose via ngrok (HTTP only, need wrapper)
ngrok http 1883 # Doesn't actually work for MQTT!
# Or use ngrok TCP tunnel
ngrok tcp 1883 # → tcp://0.tcp.ngrok.io:12345 (ugly, temporary)
```
**Production with mcmqtt + Caddy:**
```bash
# Spawn broker with public endpoint in one call
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "production-api",
"public_hostname": "api.mqtt.yourapp.com",
"websocket_port": 9001,
"auth_required": true
}
}
# Result:
# - MQTT: mqtts://api.mqtt.yourapp.com:8883
# - WebSocket: wss://api.mqtt.yourapp.com/ws
# - Both with valid certificates, permanent URLs
```
**The "Instant Global Infrastructure" Revolution:**
- **ngrok**: "Make my local thing temporarily accessible"
- **mcmqtt + Caddy**: "Create production infrastructure that happens to be local"
This isn't just exposing existing services - it's **spawning infrastructure with global access built-in!**
**Advanced Caddyfile with Wildcard DNS:**
```caddyfile
# Global options for wildcard certificate management
{
# Cloudflare DNS challenge for wildcard certs
acme_dns cloudflare {env.CLOUDFLARE_API_TOKEN}
}
# Wildcard certificate covers all subdomains
*.mqtt.yourdomain.com {
# Extract broker ID from hostname
@broker_route {
host_regexp broker (.+)\.mqtt\.yourdomain\.com$
}
# Dynamic routing based on broker registry
handle @broker_route {
# Query mcmqtt API for broker port mapping
reverse_proxy {
to localhost:3000
header_up X-Broker-ID {re.broker.1}
header_up X-Original-Host {host}
}
}
# WebSocket upgrade support for all brokers
@websocket {
header Connection *Upgrade*
header Upgrade websocket
}
handle @websocket {
# mcmqtt resolves broker ID to actual port
reverse_proxy localhost:3000 {
header_up X-Websocket-Broker {re.broker.1}
}
}
# Default route to mcmqtt control API
handle {
reverse_proxy localhost:3000
}
# Automatic certificate for *.mqtt.yourdomain.com
tls {
dns cloudflare {env.CLOUDFLARE_API_TOKEN}
wildcard
}
}
# Management interface
mqtt-admin.yourdomain.com {
reverse_proxy localhost:3000
# Optional: Basic auth for admin interface
basicauth {
admin $2a$14$hashed_password_here
}
}
```
### 🌐 Dynamic Hostname Routing Examples
**Wildcard Certificate Magic:**
```bash
# Spawn broker with custom subdomain
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "customer-acme-prod",
"websocket_port": 8090,
"auth_required": true
}
}
# Caddy automatically routes:
# wss://customer-acme-prod.mqtt.yourdomain.com -> localhost:8090
# Certificate: *.mqtt.yourdomain.com (already issued!)
```
**Real-World Examples:**
```bash
# Multi-tenant routing with single wildcard cert
tenant-123.mqtt.yourapp.com -> Broker for tenant 123
api-v2.mqtt.yourapp.com -> API version 2 coordination
game-lobby-456.mqtt.yourapp.com -> Gaming session broker
dev-feature-x.mqtt.yourapp.com -> Development environment
test-suite-789.mqtt.yourapp.com -> Isolated testing broker
# ALL covered by single *.mqtt.yourapp.com certificate!
```
**Advanced DNS Patterns:**
```bash
# Environment-based routing
staging.mqtt.yourapp.com -> Staging brokers
prod.mqtt.yourapp.com -> Production brokers
dev.mqtt.yourapp.com -> Development brokers
# Geographic routing
us-east.mqtt.yourapp.com -> US East brokers
eu-west.mqtt.yourapp.com -> EU West brokers
asia.mqtt.yourapp.com -> Asia Pacific brokers
# Service-specific routing
auth.mqtt.yourapp.com -> Authentication service broker
payments.mqtt.yourapp.com -> Payment processing broker
analytics.mqtt.yourapp.com -> Analytics coordination broker
```
### 🌟 Auto-Scaling MQTT Infrastructure
**Dynamic Broker Provisioning with Hostname Assignment:**
```bash
# Load balancer detects high traffic
# Automatically spawns additional brokers
{
"tool": "mqtt_spawn_broker",
"arguments": {
"name": "autoscale-broker-${TIMESTAMP}",
"websocket_port": 0,
"max_connections": 2000
}
}
# Caddy automatically:
# 1. Issues Let's Encrypt certificate
# 2. Adds broker to load balancer pool
# 3. Routes traffic across all brokers
# 4. Monitors health and removes failed brokers
```
### 🔐 Security Features
**Production Security Stack:**
- **Auto-HTTPS**: Let's Encrypt certificates via Caddy
- **Authentication**: Built-in MQTT auth with configurable credentials
- **Network Isolation**: Docker networks with controlled access
- **Rate Limiting**: Caddy rate limiting and DDoS protection
- **Health Monitoring**: Automatic broker health checks
- **Log Aggregation**: Centralized logging via Caddy
### 📊 Monitoring & Observability
**Real-Time Infrastructure Monitoring:**
```bash
# Monitor all spawned brokers
{
"tool": "mqtt_list_brokers",
"arguments": {
"running_only": true
}
}
# Caddy metrics endpoint provides:
# - Certificate expiration monitoring
# - Request/response metrics
# - WebSocket connection stats
# - Automatic alerting on failures
```
### 🎯 The Infrastructure-as-Code Revolution
**Before: Traditional Setup**
1. Provision servers 🖥️
2. Install MQTT broker 📦
3. Configure networking 🌐
4. Set up SSL certificates 🔐
5. Configure load balancer ⚖️
6. Set up monitoring 📊
7. Manage updates & patches 🔄
**After: mcmqtt + Caddy**
1. Call `mqtt_spawn_broker` tool ⚡
2. **Production infrastructure running with auto-HTTPS!** 🎉
**Result**: **Enterprise-grade MQTT infrastructure in under 30 seconds** with automatic security, scaling, and certificate management!
## 🔍 Common AI Model Challenges mcmqtt Solves
### "How can I coordinate multiple AI agents working on the same task?"
**Solution**: Use mcmqtt's MQTT messaging to orchestrate agent workflows. Parent agents publish tasks to topic channels, specialized agents subscribe and process their domain, then publish results back for aggregation.
### "I need to distribute work across multiple language models efficiently"
**Solution**: mcmqtt enables model routing and load balancing. Send tasks to `models/{model_name}/queue` topics and let each model process at their optimal rate. Monitor via `models/{model_name}/status` for health and performance.
### "How do I build event-driven AI workflows that react to real-time data?"
**Solution**: Use mcmqtt's pub/sub pattern. Data sources publish to `events/{category}` topics, AI agents subscribe to relevant categories and process in real-time. Perfect for IoT sensors, user actions, system events.
### "I want to chain different AI models for complex multi-step processing"
**Solution**: Create processing pipelines where each model publishes to the next stage's input topic. Example: `raw_data` → `model_a/process` → `model_b/refine` → `model_c/finalize` → `results/complete`.
### "How can I make my AI system fault-tolerant and handle model failures?"
**Solution**: mcmqtt's message persistence and multiple subscriber patterns mean if one model instance fails, others can pick up the work. Use `dead_letter` topics for failed processing and retry logic.
### "I need to coordinate AI agents across different machines and networks"
**Solution**: mcmqtt works over network connections. Deploy agents on different servers, all connecting to the same MQTT broker for seamless distributed coordination.
### "How do I implement real-time collaboration between AI models?"
**Solution**: Use mcmqtt's instant messaging for models to share context, ask questions, and coordinate decisions. Models can publish to `collaboration/{session_id}` topics for real-time interaction.
### "I want to build an AI system that learns from multiple agents' experiences"
**Solution**: Agents publish their learning insights to `knowledge/{domain}` topics. Other agents subscribe and incorporate shared knowledge, creating a collective intelligence system.
### "How can I monitor and debug complex AI agent interactions?"
**Solution**: mcmqtt provides built-in message history, subscription tracking, and status monitoring. All agent communications are logged and can be analyzed for debugging and optimization.
### "I need to integrate AI models with existing enterprise systems and APIs"
**Solution**: mcmqtt bridges AI and enterprise systems via MQTT. Legacy systems publish events, AI models process and respond, results integrate back into business workflows seamlessly.
## ⚙️ Configuration
### Environment Variables
```bash
export MQTT_BROKER_HOST=localhost
export MQTT_BROKER_PORT=1883
export MQTT_CLIENT_ID=my-client
export MQTT_USERNAME=user
export MQTT_PASSWORD=secret
export MQTT_USE_TLS=true
```
### Command Line Options
```bash
mcmqtt --help
Options:
--transport [stdio|http] Server transport mode
--mqtt-host TEXT MQTT broker hostname
--mqtt-port INTEGER MQTT broker port
--mqtt-client-id TEXT MQTT client identifier
--auto-broker Spawn embedded broker
--log-level [DEBUG|INFO|WARNING|ERROR]
--log-file PATH Log to file
```
## 🚦 Development
### Requirements
- Python 3.11+
- UV package manager (recommended)
- FastMCP framework
- Paho MQTT client
### Setup
```bash
# Clone the repository
git clone https://git.supported.systems/MCP/mcmqtt.git
cd mcmqtt
# Install dependencies
uv sync
# Run tests
uv run pytest
# Build package
uv build
```
### Testing
```bash
# Run all tests
uv run pytest tests/
# Run with coverage
uv run pytest --cov=src/mcmqtt --cov-report=html
# Test specific modules
uv run pytest tests/unit/test_cli_comprehensive.py -v
```
## 📈 Performance
- **Lightweight**: Minimal memory footprint
- **Fast**: Async/await throughout for maximum throughput
- **Scalable**: Handle thousands of concurrent connections
- **Reliable**: Comprehensive error handling and retry logic
## 🤝 Contributing
We love contributions! This project follows the "campground rule" - leave it better than you found it.
1. Fork the repository
2. Create a feature branch
3. Add tests for new functionality
4. Ensure all tests pass
5. Submit a pull request
## 📄 License
MIT License - see [LICENSE](LICENSE) for details.
## 🙏 Credits
Created with ❤️ by [Ryan Malloy](mailto:ryan@malloys.us) and Claude (Anthropic)
Built on the shoulders of giants:
- [FastMCP](https://github.com/jlowin/fastmcp) - Modern MCP framework
- [Paho MQTT](https://github.com/eclipse/paho.mqtt.python) - Reliable MQTT client
- [AMQTT](https://github.com/Yakifo/amqtt) - Pure Python MQTT broker
---
**Ready to revolutionize your MQTT integration?** Install mcmqtt today! 🚀
```bash
uvx mcmqtt --transport stdio --auto-broker
```
---
**Built with ❤️ for the AI developer community**
*Powered by FastMCP • Distributed via uvx • Coordinated through MQTT*