Features: - 8 comprehensive PDF processing tools with intelligent fallbacks - Text extraction (PyMuPDF, pdfplumber, pypdf with auto-selection) - Table extraction (Camelot → pdfplumber → Tabula fallback chain) - OCR processing with Tesseract and preprocessing options - Document analysis (structure, metadata, scanned detection) - Image extraction with filtering capabilities - PDF to markdown conversion with metadata - Built on FastMCP framework with full MCP protocol support - Comprehensive error handling and user-friendly messages - Docker support and cross-platform compatibility - Complete test suite and examples 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
319 lines
7.4 KiB
Markdown
319 lines
7.4 KiB
Markdown
# MCP PDF Tools
|
|
|
|
A comprehensive FastMCP server for PDF processing operations. This server provides powerful tools for extracting text, tables, images, and metadata from PDFs, performing OCR on scanned documents, and converting PDFs to various formats.
|
|
|
|
## Features
|
|
|
|
- **Text Extraction**: Multiple methods (PyMuPDF, pdfplumber, pypdf) with automatic selection
|
|
- **Table Extraction**: Support for both bordered and borderless tables using Camelot, Tabula, and pdfplumber
|
|
- **OCR**: Process scanned PDFs with Tesseract OCR, including preprocessing for better results
|
|
- **Document Analysis**: Extract structure, metadata, and check if PDFs are scanned
|
|
- **Image Extraction**: Extract images with size filtering
|
|
- **Format Conversion**: Convert PDFs to clean Markdown format
|
|
- **Smart Detection**: Automatically detect the best method for each operation
|
|
|
|
## Installation
|
|
|
|
### Using uv (recommended)
|
|
|
|
```bash
|
|
# Clone the repository
|
|
git clone https://github.com/rpm/mcp-pdf-tools
|
|
cd mcp-pdf-tools
|
|
|
|
# Install with uv
|
|
uv sync
|
|
|
|
# Install Tesseract OCR (required for OCR functionality)
|
|
# On Ubuntu/Debian:
|
|
sudo apt-get install tesseract-ocr tesseract-ocr-eng
|
|
|
|
# On macOS:
|
|
brew install tesseract
|
|
|
|
# On Windows:
|
|
# Download installer from: https://github.com/UB-Mannheim/tesseract/wiki
|
|
```
|
|
|
|
### Using pip
|
|
|
|
```bash
|
|
pip install mcp-pdf-tools
|
|
|
|
# Install system dependencies for OCR
|
|
# Same as above for Tesseract
|
|
```
|
|
|
|
## Configuration
|
|
|
|
### Claude Desktop Integration
|
|
|
|
Add to your Claude configuration (`~/Library/Application Support/Claude/claude_desktop_config.json` on macOS):
|
|
|
|
```json
|
|
{
|
|
"mcpServers": {
|
|
"pdf-tools": {
|
|
"command": "uv",
|
|
"args": ["run", "mcp-pdf-tools"],
|
|
"cwd": "/path/to/mcp-pdf-tools"
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
Or if installed via pip:
|
|
|
|
```json
|
|
{
|
|
"mcpServers": {
|
|
"pdf-tools": {
|
|
"command": "mcp-pdf-tools"
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
### Claude Code Integration
|
|
|
|
For development with Claude Code, add the MCP server from your local development directory:
|
|
|
|
```bash
|
|
claude mcp add pdf-tools "uvx --from /path/to/mcp-pdf-tools mcp-pdf-tools"
|
|
```
|
|
|
|
### Environment Variables
|
|
|
|
Create a `.env` file in your project directory:
|
|
|
|
```bash
|
|
# Optional: Tesseract configuration
|
|
TESSDATA_PREFIX=/usr/share/tesseract-ocr/5/tessdata
|
|
|
|
# Optional: Temporary file directory
|
|
PDF_TEMP_DIR=/tmp/pdf_processing
|
|
|
|
# Optional: Enable debug logging
|
|
DEBUG=true
|
|
```
|
|
|
|
## Usage Examples
|
|
|
|
### Text Extraction
|
|
|
|
```python
|
|
# Basic text extraction
|
|
result = await extract_text(
|
|
pdf_path="/path/to/document.pdf"
|
|
)
|
|
|
|
# Extract specific pages with layout preservation
|
|
result = await extract_text(
|
|
pdf_path="/path/to/document.pdf",
|
|
pages=[0, 1, 2], # First 3 pages
|
|
preserve_layout=True,
|
|
method="pdfplumber" # Or "auto", "pymupdf", "pypdf"
|
|
)
|
|
```
|
|
|
|
### Table Extraction
|
|
|
|
```python
|
|
# Extract all tables
|
|
result = await extract_tables(
|
|
pdf_path="/path/to/document.pdf"
|
|
)
|
|
|
|
# Extract tables from specific pages in markdown format
|
|
result = await extract_tables(
|
|
pdf_path="/path/to/document.pdf",
|
|
pages=[2, 3],
|
|
output_format="markdown" # Or "json", "csv"
|
|
)
|
|
```
|
|
|
|
### OCR for Scanned PDFs
|
|
|
|
```python
|
|
# Basic OCR
|
|
result = await ocr_pdf(
|
|
pdf_path="/path/to/scanned.pdf"
|
|
)
|
|
|
|
# OCR with multiple languages and preprocessing
|
|
result = await ocr_pdf(
|
|
pdf_path="/path/to/scanned.pdf",
|
|
languages=["eng", "fra", "deu"],
|
|
preprocess=True,
|
|
dpi=300
|
|
)
|
|
```
|
|
|
|
### Document Analysis
|
|
|
|
```python
|
|
# Check if PDF is scanned
|
|
result = await is_scanned_pdf(
|
|
pdf_path="/path/to/document.pdf"
|
|
)
|
|
|
|
# Get document structure and metadata
|
|
result = await get_document_structure(
|
|
pdf_path="/path/to/document.pdf"
|
|
)
|
|
|
|
# Extract comprehensive metadata
|
|
result = await extract_metadata(
|
|
pdf_path="/path/to/document.pdf"
|
|
)
|
|
```
|
|
|
|
### Format Conversion
|
|
|
|
```python
|
|
# Convert to Markdown
|
|
result = await pdf_to_markdown(
|
|
pdf_path="/path/to/document.pdf",
|
|
include_images=True,
|
|
include_metadata=True
|
|
)
|
|
```
|
|
|
|
### Image Extraction
|
|
|
|
```python
|
|
# Extract images with size filtering
|
|
result = await extract_images(
|
|
pdf_path="/path/to/document.pdf",
|
|
min_width=200,
|
|
min_height=200,
|
|
output_format="png" # Or "jpeg"
|
|
)
|
|
```
|
|
|
|
## Available Tools
|
|
|
|
| Tool | Description |
|
|
|------|-------------|
|
|
| `extract_text` | Extract text with multiple methods and layout preservation |
|
|
| `extract_tables` | Extract tables in various formats (JSON, CSV, Markdown) |
|
|
| `ocr_pdf` | Perform OCR on scanned PDFs with preprocessing |
|
|
| `is_scanned_pdf` | Check if a PDF is scanned or text-based |
|
|
| `get_document_structure` | Extract document structure, outline, and basic metadata |
|
|
| `extract_metadata` | Extract comprehensive metadata and file statistics |
|
|
| `pdf_to_markdown` | Convert PDF to clean Markdown format |
|
|
| `extract_images` | Extract images with filtering options |
|
|
|
|
## Development
|
|
|
|
### Setup Development Environment
|
|
|
|
```bash
|
|
# Clone and enter directory
|
|
git clone https://github.com/rpm/mcp-pdf-tools
|
|
cd mcp-pdf-tools
|
|
|
|
# Install with development dependencies
|
|
uv sync --dev
|
|
|
|
# Run tests
|
|
uv run pytest
|
|
|
|
# Format code
|
|
uv run black src/ tests/
|
|
uv run ruff check src/ tests/
|
|
```
|
|
|
|
### Running Tests
|
|
|
|
```bash
|
|
# Run all tests
|
|
uv run pytest
|
|
|
|
# Run with coverage
|
|
uv run pytest --cov=mcp_pdf_tools
|
|
|
|
# Run specific test
|
|
uv run pytest tests/test_server.py::test_extract_text
|
|
```
|
|
|
|
### Building for PyPI
|
|
|
|
```bash
|
|
# Build the package
|
|
uv build
|
|
|
|
# Upload to PyPI (requires credentials)
|
|
uv publish
|
|
```
|
|
|
|
## Troubleshooting
|
|
|
|
### OCR Not Working
|
|
|
|
1. **Tesseract not installed**: Make sure Tesseract is installed on your system
|
|
2. **Language data missing**: Install additional language packs:
|
|
```bash
|
|
# Ubuntu/Debian
|
|
sudo apt-get install tesseract-ocr-fra tesseract-ocr-deu
|
|
|
|
# macOS
|
|
brew install tesseract-lang
|
|
```
|
|
|
|
### Table Extraction Issues
|
|
|
|
1. **Java not found**: Tabula requires Java. Install Java 8 or higher.
|
|
2. **Camelot dependencies**: Install system dependencies:
|
|
```bash
|
|
# Ubuntu/Debian
|
|
sudo apt-get install python3-tk ghostscript
|
|
|
|
# macOS
|
|
brew install ghostscript tcl-tk
|
|
```
|
|
|
|
### Memory Issues with Large PDFs
|
|
|
|
For very large PDFs, consider:
|
|
1. Processing specific page ranges instead of the entire document
|
|
2. Increasing available memory for Python
|
|
3. Using the streaming capabilities of pdfplumber for text extraction
|
|
|
|
## Architecture
|
|
|
|
The server uses intelligent fallback mechanisms:
|
|
|
|
1. **Text Extraction**: Automatically detects if a PDF is scanned and suggests OCR
|
|
2. **Table Extraction**: Tries multiple methods (Camelot → pdfplumber → Tabula) until tables are found
|
|
3. **Error Handling**: Graceful degradation with informative error messages
|
|
|
|
## Performance Tips
|
|
|
|
- For large PDFs, process in chunks using page ranges
|
|
- Use `method="pymupdf"` for fastest text extraction
|
|
- For complex tables, start with `method="camelot"`
|
|
- Enable preprocessing for better OCR results on poor quality scans
|
|
|
|
## Contributing
|
|
|
|
Contributions are welcome! Please:
|
|
|
|
1. Fork the repository
|
|
2. Create a feature branch
|
|
3. Add tests for new functionality
|
|
4. Submit a pull request
|
|
|
|
## License
|
|
|
|
MIT License - see LICENSE file for details
|
|
|
|
## Acknowledgments
|
|
|
|
This MCP server leverages several excellent PDF processing libraries:
|
|
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF) for fast PDF operations
|
|
- [pdfplumber](https://github.com/jsvine/pdfplumber) for layout-aware extraction
|
|
- [Camelot](https://github.com/camelot-dev/camelot) for table extraction
|
|
- [Tabula-py](https://github.com/chezou/tabula-py) for Java-based table extraction
|
|
- [Tesseract](https://github.com/tesseract-ocr/tesseract) for OCR functionality
|