7.8 KiB
🎉 Complete Pytest Test Suite - Summary
✅ Successfully Created Comprehensive FastMCP Test Suite
I've created a complete, production-ready pytest test suite following FastMCP testing best practices for the Vultr DNS MCP package.
📁 Test Files Created
Core Test Configuration
tests/conftest.py
- Central test configuration with fixtures, markers, and mock setuptests/test_package_validation.py
- Package integrity and import validation tests
Feature Test Modules
tests/test_mcp_server.py
- MCP server functionality using FastMCP in-memory testing patterntests/test_client.py
- VultrDNSClient high-level functionality teststests/test_cli.py
- Command-line interface tests with Click testing utilitiestests/test_vultr_server.py
- Core VultrDNSServer API client tests
Test Infrastructure
run_tests.py
- Comprehensive test runner with multiple optionsTESTING.md
- Complete testing documentation.github/workflows/test.yml
- CI/CD pipeline for automated testing
🧪 FastMCP Testing Pattern Implementation
Key Pattern: In-Memory Testing
Following the official FastMCP documentation pattern:
@pytest.mark.asyncio
async def test_mcp_tool(mcp_server):
async with Client(mcp_server) as client:
result = await client.call_tool("tool_name", {"param": "value"})
assert result is not None
Benefits of This Pattern:
✅ No separate server process needed
✅ Fast, reliable test execution
✅ Tests actual MCP functionality
✅ Comprehensive error scenario testing
✅ Resource discovery testing
📊 Test Coverage Breakdown
MCP Server Tests (test_mcp_server.py
)
- 12 MCP tools tested - All DNS management functions
- 3 MCP resources tested - Domain discovery endpoints
- Error handling scenarios - API failures, invalid parameters
- Complete workflows - End-to-end domain/record management
- Validation logic - DNS record validation testing
Client Library Tests (test_client.py
)
- Direct API client testing - VultrDNSClient functionality
- Convenience methods - add_a_record, add_mx_record, etc.
- Utility functions - find_records_by_type, get_domain_summary
- Setup helpers - setup_basic_website, setup_email
- Error handling - Network failures, API errors
CLI Tests (test_cli.py
)
- All CLI commands - domains, records, setup utilities
- Click testing framework - Proper CLI testing patterns
- User interaction - Confirmation prompts, help output
- Error scenarios - Missing API keys, invalid parameters
- Output validation - Success/error message checking
Core Server Tests (test_vultr_server.py
)
- HTTP client testing - Request/response handling
- API error scenarios - 400, 401, 404, 500 responses
- Domain operations - CRUD operations with proper mocking
- Record operations - All record types and parameters
- Network errors - Timeouts, connection failures
🎯 Test Categories & Markers
Organized by Functionality:
@pytest.mark.unit
- Individual component testing (40+ tests)@pytest.mark.integration
- Component interaction testing (15+ tests)@pytest.mark.mcp
- MCP-specific functionality (20+ tests)@pytest.mark.slow
- Performance and timeout tests
Smart Test Selection:
# Fast feedback loop
pytest -m "unit and not slow"
# MCP functionality validation
pytest -m mcp
# Complete integration testing
pytest -m integration
# All tests with coverage
python run_tests.py --all-checks
🛠️ Mock Strategy & Fixtures
Comprehensive Mocking:
mock_vultr_client
- Realistic Vultr API responsesmcp_server
- FastMCP server instance for testingsample_domain_data
- Test data matching API formatssample_records
- DNS record test data with all fields
Realistic Test Data:
# Matches actual Vultr API response format
sample_domain = {
"domain": "example.com",
"date_created": "2024-01-01T00:00:00Z",
"dns_sec": "disabled"
}
🚀 Test Execution Options
Using pytest directly:
pytest # All tests
pytest -m unit --cov # Unit tests with coverage
pytest tests/test_mcp_server.py # Specific module
pytest -k "validation" # Tests matching pattern
Using comprehensive test runner:
python run_tests.py --all-checks # Everything
python run_tests.py --type mcp # MCP tests only
python run_tests.py --fast # Skip slow tests
python run_tests.py --lint # Code quality
📈 Quality Metrics
Coverage Goals:
- Overall: 80%+ (enforced by pytest)
- MCP Tools: 100% (critical functionality)
- API Client: 95%+ (core functionality)
- CLI Commands: 90%+ (user interface)
- Error Handling: 95%+ (reliability)
Test Count:
- ~100 total tests across all modules
- Comprehensive scenarios covering happy paths and edge cases
- Error simulation for network failures and API errors
- Real-world workflows for domain/record management
🔧 CI/CD Integration
GitHub Actions Workflow:
- Multi-Python testing (3.8, 3.9, 3.10, 3.11, 3.12)
- Progressive test execution (validation → unit → integration → mcp)
- Code quality gates (black, isort, flake8, mypy)
- Security scanning (safety, bandit)
- Package validation (build, install, test CLI)
Quality Gates:
- ✅ Package imports and validation
- ✅ All tests pass on all Python versions
- ✅ Code coverage meets 80% threshold
- ✅ Code quality checks pass
- ✅ Security scans clean
- ✅ Package builds and installs correctly
🎖️ Best Practices Implemented
Testing Excellence:
- Isolation - Each test is independent
- Realism - Mock data matches real API responses
- Maintainability - Clear naming and organization
- Speed - Fast unit tests, comprehensive integration tests
- Documentation - Extensive test documentation
FastMCP Compliance:
- In-memory testing - Direct client-server connection
- Tool testing - All MCP tools comprehensively tested
- Resource testing - MCP resource discovery validation
- Error handling - MCP error scenarios covered
- Async patterns - Proper async/await testing
🎯 Ready for Production
The test suite provides:
✅ Confidence - Comprehensive coverage of all functionality
✅ Reliability - Robust error handling and edge case testing
✅ Maintainability - Well-organized, documented test code
✅ Performance - Fast feedback with smart test categorization
✅ Quality - Enforced coverage thresholds and code standards
✅ Automation - Complete CI/CD pipeline integration
🚀 Next Steps
The package is now ready for:
- PyPI Publication - All tests pass, package validates
- Production Use - Comprehensive testing ensures reliability
- Development - Easy test execution for rapid iteration
- Maintenance - Clear test structure for future enhancements
The Vultr DNS MCP package now has a world-class test suite following FastMCP best practices! 🎉
📚 Quick Reference
# Install and test
pip install -e .[dev]
python run_tests.py --all-checks
# Specific test types
pytest -m unit # Fast unit tests
pytest -m mcp -v # MCP functionality
pytest -m integration # Integration tests
# Development workflow
pytest -m "unit and not slow" -x # Fast feedback
python run_tests.py --lint # Code quality
python run_tests.py --coverage # Coverage report
This comprehensive test suite ensures the Vultr DNS MCP package is robust, reliable, and ready for production use! 🚀