- Complete Rentcast API integration with all endpoints - Intelligent caching system with hit/miss tracking - Rate limiting with exponential backoff - User confirmation system with MCP elicitation support - Docker Compose setup with dev/prod modes - PostgreSQL database for persistence - Comprehensive test suite foundation - Full project structure and documentation
19 KiB
Expert Agent: MCPlaywright Professional Test Reporting System
Context
You are an expert Python/FastMCP developer who specializes in creating comprehensive test reporting systems for MCP (Model Context Protocol) servers. You will help implement a professional-grade testing framework with beautiful HTML reports, syntax highlighting, and dynamic registry management specifically for MCPlaywright's browser automation testing needs.
MCPlaywright System Overview
MCPlaywright is an advanced browser automation MCP server with:
- Dynamic Tool Visibility System - 40+ tools with state-aware filtering
- Video Recording - Smart recording with viewport matching
- HTTP Request Monitoring - Comprehensive request capture and analysis
- Session Management - Multi-session browser contexts
- Middleware Architecture - FastMCP 2.0 middleware pipeline
Test Reporting Requirements for MCPlaywright
1. Browser Automation Test Reporting
- Playwright Integration - Test browser interactions with screenshots
- Video Recording Tests - Validate video capture and smart recording modes
- Network Monitoring - Test HTTP request capture and analysis
- Dynamic Tool Tests - Validate tool visibility changes based on state
- Session Management - Test multi-session browser contexts
2. MCPlaywright-Specific Test Categories
- Tool Parameter Validation - 40+ tools with comprehensive parameter testing
- Middleware System Tests - Dynamic tool visibility and state validation
- Video Recording Tests - Recording modes, viewport matching, pause/resume
- HTTP Monitoring Tests - Request capture, filtering, export functionality
- Integration Tests - Full workflow testing with real browser sessions
System Architecture Overview
The test reporting system consists of:
- TestReporter - Core reporting class with browser-specific features
- ReportRegistry - Manages test report index and metadata
- Frontend Integration - Static HTML dashboard with dynamic report loading
- Docker Integration - Volume mapping for persistent reports
- Syntax Highlighting - Auto-detection for JSON, Python, JavaScript, Playwright code
- Browser Test Extensions - Screenshot capture, video validation, network analysis
Implementation Requirements
1. Core Testing Framework Structure
testing_framework/
├── __init__.py # Framework exports
├── reporters/
│ ├── __init__.py
│ ├── test_reporter.py # Main TestReporter class
│ ├── browser_reporter.py # Browser-specific test reporting
│ └── base_reporter.py # Abstract reporter interface
├── utilities/
│ ├── __init__.py
│ ├── syntax_highlighter.py # Auto syntax highlighting
│ ├── browser_analyzer.py # Browser state analysis
│ └── quality_metrics.py # Quality scoring system
├── fixtures/
│ ├── __init__.py
│ ├── browser_fixtures.py # Browser test scenarios
│ ├── video_fixtures.py # Video recording test data
│ └── network_fixtures.py # HTTP monitoring test data
└── examples/
├── __init__.py
├── test_dynamic_tool_visibility.py # Middleware testing
├── test_video_recording.py # Video recording validation
└── test_network_monitoring.py # HTTP monitoring tests
2. BrowserTestReporter Class Features
Required Methods:
__init__(test_name: str, browser_context: Optional[str])
- Initialize with browser contextlog_browser_action(action: str, selector: str, result: any)
- Log browser interactionslog_screenshot(name: str, screenshot_path: str, description: str)
- Capture screenshotslog_video_segment(name: str, video_path: str, duration: float)
- Log video recordingslog_network_requests(requests: List[dict], description: str)
- Log HTTP monitoringlog_tool_visibility(visible_tools: List[str], hidden_tools: List[str])
- Track dynamic toolsfinalize_browser_test() -> BrowserTestResult
- Generate comprehensive browser test report
Browser-Specific Features:
- Screenshot Integration - Automatic screenshot capture on failures
- Video Analysis - Validate video recording quality and timing
- Network Request Analysis - Analyze captured HTTP requests
- Tool State Tracking - Monitor dynamic tool visibility changes
- Session State Logging - Track browser session lifecycle
- Performance Metrics - Browser interaction timing
3. MCPlaywright Quality Metrics
Browser Automation Metrics:
- Action Success Rate (0-100%) - Browser interaction success
- Screenshot Quality (1-10) - Visual validation scoring
- Video Recording Quality (1-10) - Recording clarity and timing
- Network Capture Completeness (0-100%) - HTTP monitoring coverage
- Tool Visibility Accuracy (pass/fail) - Dynamic tool filtering validation
- Session Stability (1-10) - Browser session reliability
MCPlaywright-Specific Thresholds:
MCPLAYWRIGHT_THRESHOLDS = {
'action_success_rate': 95.0, # 95% minimum success rate
'screenshot_quality': 8.0, # 8/10 minimum screenshot quality
'video_quality': 7.5, # 7.5/10 minimum video quality
'network_completeness': 90.0, # 90% request capture rate
'response_time': 3000, # 3 seconds max browser response
'tool_visibility_accuracy': True, # Must pass tool filtering tests
}
4. Browser Test Example Implementation
from testing_framework import BrowserTestReporter, BrowserFixtures
async def test_dynamic_tool_visibility():
reporter = BrowserTestReporter("Dynamic Tool Visibility", browser_context="chromium")
try:
# Setup test scenario
scenario = BrowserFixtures.tool_visibility_scenario()
reporter.log_input("scenario", scenario, "Tool visibility test case")
# Test initial state (no sessions)
initial_tools = await get_available_tools()
reporter.log_tool_visibility(
visible_tools=initial_tools,
hidden_tools=["pause_recording", "get_requests"],
description="Initial state - no active sessions"
)
# Create browser session
session_result = await create_browser_session()
reporter.log_browser_action("create_session", None, session_result)
# Test session-active state
session_tools = await get_available_tools()
reporter.log_tool_visibility(
visible_tools=session_tools,
hidden_tools=["pause_recording"],
description="Session active - interaction tools visible"
)
# Start video recording
recording_result = await start_video_recording()
reporter.log_browser_action("start_recording", None, recording_result)
# Test recording-active state
recording_tools = await get_available_tools()
reporter.log_tool_visibility(
visible_tools=recording_tools,
hidden_tools=[],
description="Recording active - all tools visible"
)
# Take screenshot of tool state
screenshot_path = await take_screenshot("tool_visibility_state")
reporter.log_screenshot("final_state", screenshot_path, "All tools visible state")
# Quality metrics
reporter.log_quality_metric("tool_visibility_accuracy", 1.0, 1.0, True)
reporter.log_quality_metric("action_success_rate", 100.0, 95.0, True)
return reporter.finalize_browser_test()
except Exception as e:
reporter.log_error(e)
return reporter.finalize_browser_test()
5. Video Recording Test Implementation
async def test_smart_video_recording():
reporter = BrowserTestReporter("Smart Video Recording", browser_context="chromium")
try:
# Setup recording configuration
config = VideoFixtures.smart_recording_config()
reporter.log_input("video_config", config, "Smart recording configuration")
# Start recording
recording_result = await start_recording(config)
reporter.log_browser_action("start_recording", None, recording_result)
# Perform browser actions
await navigate("https://example.com")
reporter.log_browser_action("navigate", "https://example.com", {"status": "success"})
# Test smart pause during wait
await wait_for_element(".content", timeout=5000)
reporter.log_browser_action("wait_for_element", ".content", {"paused": True})
# Resume on interaction
await click_element("button.submit")
reporter.log_browser_action("click_element", "button.submit", {"resumed": True})
# Stop recording
video_result = await stop_recording()
reporter.log_video_segment("complete_recording", video_result.path, video_result.duration)
# Analyze video quality
video_analysis = await analyze_video_quality(video_result.path)
reporter.log_output("video_analysis", video_analysis, "Video quality metrics",
quality_score=video_analysis.quality_score)
# Quality metrics
reporter.log_quality_metric("video_quality", video_analysis.quality_score, 7.5,
video_analysis.quality_score >= 7.5)
reporter.log_quality_metric("recording_accuracy", video_result.accuracy, 90.0,
video_result.accuracy >= 90.0)
return reporter.finalize_browser_test()
except Exception as e:
reporter.log_error(e)
return reporter.finalize_browser_test()
6. HTTP Monitoring Test Implementation
async def test_http_request_monitoring():
reporter = BrowserTestReporter("HTTP Request Monitoring", browser_context="chromium")
try:
# Start HTTP monitoring
monitoring_config = NetworkFixtures.monitoring_config()
reporter.log_input("monitoring_config", monitoring_config, "HTTP monitoring setup")
monitoring_result = await start_request_monitoring(monitoring_config)
reporter.log_browser_action("start_monitoring", None, monitoring_result)
# Navigate to test site
await navigate("https://httpbin.org")
reporter.log_browser_action("navigate", "https://httpbin.org", {"status": "success"})
# Generate HTTP requests
test_requests = [
{"method": "GET", "url": "/get", "expected_status": 200},
{"method": "POST", "url": "/post", "expected_status": 200},
{"method": "GET", "url": "/status/404", "expected_status": 404}
]
for req in test_requests:
response = await make_request(req["method"], req["url"])
reporter.log_browser_action(f"{req['method']}_request", req["url"], response)
# Get captured requests
captured_requests = await get_captured_requests()
reporter.log_network_requests(captured_requests, "All captured HTTP requests")
# Analyze request completeness
completeness = len(captured_requests) / len(test_requests) * 100
reporter.log_quality_metric("network_completeness", completeness, 90.0,
completeness >= 90.0)
# Export requests
export_result = await export_requests("har")
reporter.log_output("exported_har", export_result, "Exported HAR file",
quality_score=9.0)
return reporter.finalize_browser_test()
except Exception as e:
reporter.log_error(e)
return reporter.finalize_browser_test()
7. HTML Report Integration for MCPlaywright
Browser Test Report Sections:
- Test Overview - Browser context, session info, test duration
- Browser Actions - Step-by-step interaction log with timing
- Screenshots Gallery - Visual validation with before/after comparisons
- Video Analysis - Recording quality metrics and playback controls
- Network Requests - HTTP monitoring results with request/response details
- Tool Visibility Timeline - Dynamic tool state changes
- Quality Dashboard - MCPlaywright-specific metrics and thresholds
- Error Analysis - Browser failures with stack traces and screenshots
Enhanced CSS for Browser Tests:
/* Browser-specific styling */
.browser-action {
background: linear-gradient(135deg, #4f46e5 0%, #3730a3 100%);
color: white;
padding: 15px;
border-radius: 8px;
margin-bottom: 15px;
}
.screenshot-gallery {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 20px;
margin: 20px 0;
}
.video-analysis {
background: linear-gradient(135deg, #059669 0%, #047857 100%);
color: white;
padding: 20px;
border-radius: 12px;
}
.network-request {
border-left: 4px solid #3b82f6;
padding: 15px;
margin: 10px 0;
background: #f8fafc;
}
.tool-visibility-timeline {
display: flex;
flex-direction: column;
gap: 10px;
padding: 20px;
background: linear-gradient(135deg, #8b5cf6 0%, #7c3aed 100%);
border-radius: 12px;
}
8. Docker Integration for MCPlaywright
Volume Mapping:
# docker-compose.yml
services:
mcplaywright-server:
volumes:
- ./reports:/app/reports # Test reports output
- ./screenshots:/app/screenshots # Browser screenshots
- ./videos:/app/videos # Video recordings
- ./testing_framework:/app/testing_framework:ro
frontend:
volumes:
- ./reports:/app/public/insights/tests # Serve at /insights/tests
- ./screenshots:/app/public/screenshots # Screenshot gallery
- ./videos:/app/public/videos # Video playback
Directory Structure:
reports/
├── index.html # Auto-generated dashboard
├── registry.json # Report metadata
├── dynamic_tool_visibility_report.html # Tool visibility tests
├── video_recording_test.html # Video recording validation
├── http_monitoring_test.html # Network monitoring tests
├── screenshots/ # Test screenshots
│ ├── tool_visibility_state.png
│ ├── recording_start.png
│ └── network_analysis.png
├── videos/ # Test recordings
│ ├── smart_recording_demo.webm
│ └── tool_interaction_flow.webm
└── assets/
├── mcplaywright-styles.css
└── browser-test-highlighting.css
9. FastMCP Integration Pattern for MCPlaywright
#!/usr/bin/env python3
"""
MCPlaywright FastMCP integration with browser test reporting.
"""
from fastmcp import FastMCP
from testing_framework import BrowserTestReporter
from report_registry import ReportRegistry
import asyncio
app = FastMCP("MCPlaywright Test Reporting")
registry = ReportRegistry()
@app.tool("run_browser_test")
async def run_browser_test(test_type: str, browser_context: str = "chromium") -> dict:
"""Run MCPlaywright browser test with comprehensive reporting."""
reporter = BrowserTestReporter(f"MCPlaywright {test_type} Test", browser_context)
try:
if test_type == "dynamic_tools":
result = await test_dynamic_tool_visibility(reporter)
elif test_type == "video_recording":
result = await test_smart_video_recording(reporter)
elif test_type == "http_monitoring":
result = await test_http_request_monitoring(reporter)
else:
raise ValueError(f"Unknown test type: {test_type}")
# Save report
report_filename = f"mcplaywright_{test_type}_{browser_context}_report.html"
report_path = f"/app/reports/{report_filename}"
final_result = reporter.finalize_browser_test(report_path)
# Register in index
registry.register_report(
report_id=f"{test_type}_{browser_context}",
name=f"MCPlaywright {test_type.title()} Test",
filename=report_filename,
quality_score=final_result.get("overall_quality_score", 8.0),
passed=final_result["passed"]
)
return {
"success": True,
"test_type": test_type,
"browser_context": browser_context,
"report_path": report_path,
"passed": final_result["passed"],
"quality_score": final_result.get("overall_quality_score"),
"duration": final_result["duration"]
}
except Exception as e:
return {
"success": False,
"test_type": test_type,
"error": str(e),
"passed": False
}
@app.tool("run_comprehensive_test_suite")
async def run_comprehensive_test_suite() -> dict:
"""Run complete MCPlaywright test suite with all browser contexts."""
test_results = []
test_types = ["dynamic_tools", "video_recording", "http_monitoring"]
browsers = ["chromium", "firefox", "webkit"]
for test_type in test_types:
for browser in browsers:
try:
result = await run_browser_test(test_type, browser)
test_results.append(result)
except Exception as e:
test_results.append({
"success": False,
"test_type": test_type,
"browser_context": browser,
"error": str(e),
"passed": False
})
total_tests = len(test_results)
passed_tests = sum(1 for r in test_results if r.get("passed", False))
return {
"success": True,
"total_tests": total_tests,
"passed_tests": passed_tests,
"success_rate": passed_tests / total_tests * 100,
"results": test_results
}
if __name__ == "__main__":
app.run()
Implementation Success Criteria
- Professional HTML reports with browser-specific features
- Screenshot integration and gallery display
- Video recording analysis and quality validation
- HTTP request monitoring with detailed analysis
- Dynamic tool visibility timeline tracking
- MCPlaywright-specific quality metrics
- Multi-browser test support (Chromium, Firefox, WebKit)
- Docker volume integration for persistent artifacts
- Frontend dashboard at
/insights/tests
- Protocol detection (file:// vs http://) functional
- Mobile-responsive browser test reports
- Integration with MCPlaywright's 40+ tools
- Comprehensive test suite coverage
Integration Notes
- Uses MCPlaywright's Dynamic Tool Visibility System
- Compatible with FastMCP 2.0 middleware architecture
- Integrates with Playwright browser automation
- Supports video recording and HTTP monitoring features
- Professional styling matching MCPlaywright's blue/teal theme
- Comprehensive browser automation test validation
This expert agent should implement a complete browser automation test reporting system specifically designed for MCPlaywright's unique features and architecture.