pypi-query-mcp/MCP_PROMPT_TEMPLATES_SUMMARY.md
longhao 4bdf38d455 refactor: update prompt templates to follow standard MCP workflow
- Implement standard MCP prompt workflow with template variables
- Use {{parameter_name}} placeholders instead of direct string interpolation
- Add proper parameter replacement in server prompt registrations
- Update templates to return template strings with placeholders
- Follow MCP workflow: load template → parameter replacement → return final prompt
- Update documentation to reflect standard MCP workflow implementation
- Remove TEMPLATES_USE environment variable as requested
- Maintain all existing functionality while improving MCP compliance

Signed-off-by: longhao <hal.long@outlook.com>
2025-05-29 18:47:15 +08:00

6.4 KiB

PyPI Query MCP Server - Prompt Templates Feature Summary

🎯 Overview

Successfully implemented comprehensive MCP prompt templates for the PyPI Query MCP Server, adding structured guidance capabilities for common PyPI package analysis and decision-making scenarios.

Completed Features

1. Package Analysis Templates

  • analyze_package_quality - Comprehensive package quality analysis
  • compare_packages - Detailed comparison of multiple packages
  • suggest_alternatives - Finding suitable package alternatives

2. Dependency Management Templates

  • resolve_dependency_conflicts - Structured dependency conflict resolution
  • plan_version_upgrade - Package version upgrade planning
  • audit_security_risks - Security risk assessment and compliance

3. Migration Planning Templates

  • plan_package_migration - Comprehensive migration strategy planning
  • generate_migration_checklist - Detailed migration checklists

📁 File Structure

pypi_query_mcp/
├── prompts/
│   ├── __init__.py                    # Module exports
│   ├── package_analysis.py           # Package analysis templates
│   ├── dependency_management.py      # Dependency management templates
│   └── migration_guidance.py         # Migration planning templates
├── server.py                         # Updated with prompt registrations
examples/
├── prompt_templates_demo.py          # Demonstration script
tests/
├── test_prompt_templates.py          # Test coverage
docs/
├── PROMPT_TEMPLATES.md               # Comprehensive documentation
└── README.md                         # Updated with new features

🔧 Technical Implementation

Prompt Template Architecture

  • Message-based structure: Each template returns structured Message objects
  • Parameter validation: Using Pydantic Field annotations for robust input validation
  • Async support: All templates are async-compatible for FastMCP integration
  • Type safety: Full type annotations for better IDE support and validation

FastMCP Integration

  • Server registration: All templates registered as MCP prompts in server.py
  • Standardized naming: Consistent naming convention for prompt functions
  • Return format: Templates return structured text prompts for LLM consumption

Key Features

  • Comprehensive guidance: Each template provides detailed, actionable prompts
  • Structured output: Markdown-formatted prompts with clear sections and emojis
  • Contextual parameters: Rich parameter sets for customizing prompt content
  • Real-world scenarios: Templates address common PyPI package management challenges

📖 Documentation

1. PROMPT_TEMPLATES.md

  • Complete documentation for all 8 prompt templates
  • Parameter descriptions and usage examples
  • Integration examples for different MCP clients
  • Best practices and customization guidance

2. Updated README.md

  • Added prompt templates to feature list
  • Updated tool count and descriptions
  • Added usage examples for prompt templates
  • Cross-referenced detailed documentation

3. Demo and Examples

  • prompt_templates_demo.py: Interactive demonstration script
  • Usage examples: Real-world scenarios in documentation
  • Client integration: Examples for Claude Desktop, Cursor, Cline

🧪 Testing and Quality

Test Coverage

  • Unit tests: Comprehensive test suite for all prompt templates
  • Integration tests: Validation of prompt structure and content
  • Mock testing: Isolated testing without external dependencies

Code Quality

  • Linting: Passed ruff and isort checks
  • Type checking: Full type annotations and validation
  • Documentation: Comprehensive docstrings and comments

🚀 Usage Examples

In Claude Desktop

Use the "analyze_package_quality" prompt template to analyze the requests package

In Cursor

@pypi-query analyze_package_quality requests 2.31.0

Programmatic Usage

from fastmcp import Client

client = Client("pypi_query_mcp.server:mcp")
result = await client.get_prompt("analyze_package_quality", {
    "package_name": "requests", 
    "version": "2.31.0"
})

🎨 Template Categories

Analysis & Evaluation

  • Quality assessment frameworks
  • Comparative analysis structures
  • Alternative evaluation criteria

Problem Solving

  • Dependency conflict resolution strategies
  • Security audit methodologies
  • Upgrade planning frameworks

Project Management

  • Migration planning templates
  • Checklist generation
  • Timeline and resource planning

🔮 Benefits

For Developers

  • Structured guidance: Clear frameworks for package decisions
  • Time saving: Pre-built templates for common scenarios
  • Best practices: Incorporates industry standards and methodologies
  • Consistency: Standardized approach to package analysis

For Teams

  • Knowledge sharing: Consistent evaluation criteria across team members
  • Documentation: Built-in documentation templates for decisions
  • Risk management: Structured risk assessment frameworks
  • Planning: Comprehensive migration and upgrade planning

For Projects

  • Quality assurance: Systematic package evaluation processes
  • Security: Built-in security assessment templates
  • Maintenance: Structured upgrade and migration planning
  • Compliance: Templates for regulatory and compliance requirements

🎯 Integration Ready

The prompt templates are now fully integrated into the PyPI Query MCP Server and ready for use in any MCP-compatible client:

  • Claude Desktop - Full prompt template support
  • Cursor - Command palette integration
  • Cline - Interactive prompt access
  • Windsurf - Built-in template support
  • Custom clients - Programmatic API access

📊 Impact

This feature significantly enhances the PyPI Query MCP Server by:

  1. Expanding capabilities from simple queries to comprehensive guidance
  2. Improving user experience with structured, actionable prompts
  3. Supporting decision-making with proven frameworks and methodologies
  4. Enabling best practices through built-in templates and guidance
  5. Facilitating team collaboration with standardized evaluation criteria

The prompt templates transform the server from a data provider into a comprehensive PyPI package management advisor, making it an essential tool for Python developers and teams.