
- Implement standard MCP prompt workflow with template variables - Use {{parameter_name}} placeholders instead of direct string interpolation - Add proper parameter replacement in server prompt registrations - Update templates to return template strings with placeholders - Follow MCP workflow: load template → parameter replacement → return final prompt - Update documentation to reflect standard MCP workflow implementation - Remove TEMPLATES_USE environment variable as requested - Maintain all existing functionality while improving MCP compliance Signed-off-by: longhao <hal.long@outlook.com>
6.4 KiB
6.4 KiB
PyPI Query MCP Server - Prompt Templates Feature Summary
🎯 Overview
Successfully implemented comprehensive MCP prompt templates for the PyPI Query MCP Server, adding structured guidance capabilities for common PyPI package analysis and decision-making scenarios.
✅ Completed Features
1. Package Analysis Templates
analyze_package_quality
- Comprehensive package quality analysiscompare_packages
- Detailed comparison of multiple packagessuggest_alternatives
- Finding suitable package alternatives
2. Dependency Management Templates
resolve_dependency_conflicts
- Structured dependency conflict resolutionplan_version_upgrade
- Package version upgrade planningaudit_security_risks
- Security risk assessment and compliance
3. Migration Planning Templates
plan_package_migration
- Comprehensive migration strategy planninggenerate_migration_checklist
- Detailed migration checklists
📁 File Structure
pypi_query_mcp/
├── prompts/
│ ├── __init__.py # Module exports
│ ├── package_analysis.py # Package analysis templates
│ ├── dependency_management.py # Dependency management templates
│ └── migration_guidance.py # Migration planning templates
├── server.py # Updated with prompt registrations
examples/
├── prompt_templates_demo.py # Demonstration script
tests/
├── test_prompt_templates.py # Test coverage
docs/
├── PROMPT_TEMPLATES.md # Comprehensive documentation
└── README.md # Updated with new features
🔧 Technical Implementation
Prompt Template Architecture
- Message-based structure: Each template returns structured Message objects
- Parameter validation: Using Pydantic Field annotations for robust input validation
- Async support: All templates are async-compatible for FastMCP integration
- Type safety: Full type annotations for better IDE support and validation
FastMCP Integration
- Server registration: All templates registered as MCP prompts in server.py
- Standardized naming: Consistent naming convention for prompt functions
- Return format: Templates return structured text prompts for LLM consumption
Key Features
- Comprehensive guidance: Each template provides detailed, actionable prompts
- Structured output: Markdown-formatted prompts with clear sections and emojis
- Contextual parameters: Rich parameter sets for customizing prompt content
- Real-world scenarios: Templates address common PyPI package management challenges
📖 Documentation
1. PROMPT_TEMPLATES.md
- Complete documentation for all 8 prompt templates
- Parameter descriptions and usage examples
- Integration examples for different MCP clients
- Best practices and customization guidance
2. Updated README.md
- Added prompt templates to feature list
- Updated tool count and descriptions
- Added usage examples for prompt templates
- Cross-referenced detailed documentation
3. Demo and Examples
- prompt_templates_demo.py: Interactive demonstration script
- Usage examples: Real-world scenarios in documentation
- Client integration: Examples for Claude Desktop, Cursor, Cline
🧪 Testing and Quality
Test Coverage
- Unit tests: Comprehensive test suite for all prompt templates
- Integration tests: Validation of prompt structure and content
- Mock testing: Isolated testing without external dependencies
Code Quality
- Linting: Passed ruff and isort checks
- Type checking: Full type annotations and validation
- Documentation: Comprehensive docstrings and comments
🚀 Usage Examples
In Claude Desktop
Use the "analyze_package_quality" prompt template to analyze the requests package
In Cursor
@pypi-query analyze_package_quality requests 2.31.0
Programmatic Usage
from fastmcp import Client
client = Client("pypi_query_mcp.server:mcp")
result = await client.get_prompt("analyze_package_quality", {
"package_name": "requests",
"version": "2.31.0"
})
🎨 Template Categories
Analysis & Evaluation
- Quality assessment frameworks
- Comparative analysis structures
- Alternative evaluation criteria
Problem Solving
- Dependency conflict resolution strategies
- Security audit methodologies
- Upgrade planning frameworks
Project Management
- Migration planning templates
- Checklist generation
- Timeline and resource planning
🔮 Benefits
For Developers
- Structured guidance: Clear frameworks for package decisions
- Time saving: Pre-built templates for common scenarios
- Best practices: Incorporates industry standards and methodologies
- Consistency: Standardized approach to package analysis
For Teams
- Knowledge sharing: Consistent evaluation criteria across team members
- Documentation: Built-in documentation templates for decisions
- Risk management: Structured risk assessment frameworks
- Planning: Comprehensive migration and upgrade planning
For Projects
- Quality assurance: Systematic package evaluation processes
- Security: Built-in security assessment templates
- Maintenance: Structured upgrade and migration planning
- Compliance: Templates for regulatory and compliance requirements
🎯 Integration Ready
The prompt templates are now fully integrated into the PyPI Query MCP Server and ready for use in any MCP-compatible client:
- ✅ Claude Desktop - Full prompt template support
- ✅ Cursor - Command palette integration
- ✅ Cline - Interactive prompt access
- ✅ Windsurf - Built-in template support
- ✅ Custom clients - Programmatic API access
📊 Impact
This feature significantly enhances the PyPI Query MCP Server by:
- Expanding capabilities from simple queries to comprehensive guidance
- Improving user experience with structured, actionable prompts
- Supporting decision-making with proven frameworks and methodologies
- Enabling best practices through built-in templates and guidance
- Facilitating team collaboration with standardized evaluation criteria
The prompt templates transform the server from a data provider into a comprehensive PyPI package management advisor, making it an essential tool for Python developers and teams.