pypi-query-mcp/MCP_PROMPT_TEMPLATES_SUMMARY.md
longhao 4bdf38d455 refactor: update prompt templates to follow standard MCP workflow
- Implement standard MCP prompt workflow with template variables
- Use {{parameter_name}} placeholders instead of direct string interpolation
- Add proper parameter replacement in server prompt registrations
- Update templates to return template strings with placeholders
- Follow MCP workflow: load template → parameter replacement → return final prompt
- Update documentation to reflect standard MCP workflow implementation
- Remove TEMPLATES_USE environment variable as requested
- Maintain all existing functionality while improving MCP compliance

Signed-off-by: longhao <hal.long@outlook.com>
2025-05-29 18:47:15 +08:00

173 lines
6.4 KiB
Markdown

# PyPI Query MCP Server - Prompt Templates Feature Summary
## 🎯 Overview
Successfully implemented comprehensive MCP prompt templates for the PyPI Query MCP Server, adding structured guidance capabilities for common PyPI package analysis and decision-making scenarios.
## ✅ Completed Features
### 1. **Package Analysis Templates**
- **`analyze_package_quality`** - Comprehensive package quality analysis
- **`compare_packages`** - Detailed comparison of multiple packages
- **`suggest_alternatives`** - Finding suitable package alternatives
### 2. **Dependency Management Templates**
- **`resolve_dependency_conflicts`** - Structured dependency conflict resolution
- **`plan_version_upgrade`** - Package version upgrade planning
- **`audit_security_risks`** - Security risk assessment and compliance
### 3. **Migration Planning Templates**
- **`plan_package_migration`** - Comprehensive migration strategy planning
- **`generate_migration_checklist`** - Detailed migration checklists
## 📁 File Structure
```
pypi_query_mcp/
├── prompts/
│ ├── __init__.py # Module exports
│ ├── package_analysis.py # Package analysis templates
│ ├── dependency_management.py # Dependency management templates
│ └── migration_guidance.py # Migration planning templates
├── server.py # Updated with prompt registrations
examples/
├── prompt_templates_demo.py # Demonstration script
tests/
├── test_prompt_templates.py # Test coverage
docs/
├── PROMPT_TEMPLATES.md # Comprehensive documentation
└── README.md # Updated with new features
```
## 🔧 Technical Implementation
### Prompt Template Architecture
- **Message-based structure**: Each template returns structured Message objects
- **Parameter validation**: Using Pydantic Field annotations for robust input validation
- **Async support**: All templates are async-compatible for FastMCP integration
- **Type safety**: Full type annotations for better IDE support and validation
### FastMCP Integration
- **Server registration**: All templates registered as MCP prompts in server.py
- **Standardized naming**: Consistent naming convention for prompt functions
- **Return format**: Templates return structured text prompts for LLM consumption
### Key Features
- **Comprehensive guidance**: Each template provides detailed, actionable prompts
- **Structured output**: Markdown-formatted prompts with clear sections and emojis
- **Contextual parameters**: Rich parameter sets for customizing prompt content
- **Real-world scenarios**: Templates address common PyPI package management challenges
## 📖 Documentation
### 1. **PROMPT_TEMPLATES.md**
- Complete documentation for all 8 prompt templates
- Parameter descriptions and usage examples
- Integration examples for different MCP clients
- Best practices and customization guidance
### 2. **Updated README.md**
- Added prompt templates to feature list
- Updated tool count and descriptions
- Added usage examples for prompt templates
- Cross-referenced detailed documentation
### 3. **Demo and Examples**
- **prompt_templates_demo.py**: Interactive demonstration script
- **Usage examples**: Real-world scenarios in documentation
- **Client integration**: Examples for Claude Desktop, Cursor, Cline
## 🧪 Testing and Quality
### Test Coverage
- **Unit tests**: Comprehensive test suite for all prompt templates
- **Integration tests**: Validation of prompt structure and content
- **Mock testing**: Isolated testing without external dependencies
### Code Quality
- **Linting**: Passed ruff and isort checks
- **Type checking**: Full type annotations and validation
- **Documentation**: Comprehensive docstrings and comments
## 🚀 Usage Examples
### In Claude Desktop
```
Use the "analyze_package_quality" prompt template to analyze the requests package
```
### In Cursor
```
@pypi-query analyze_package_quality requests 2.31.0
```
### Programmatic Usage
```python
from fastmcp import Client
client = Client("pypi_query_mcp.server:mcp")
result = await client.get_prompt("analyze_package_quality", {
"package_name": "requests",
"version": "2.31.0"
})
```
## 🎨 Template Categories
### **Analysis & Evaluation**
- Quality assessment frameworks
- Comparative analysis structures
- Alternative evaluation criteria
### **Problem Solving**
- Dependency conflict resolution strategies
- Security audit methodologies
- Upgrade planning frameworks
### **Project Management**
- Migration planning templates
- Checklist generation
- Timeline and resource planning
## 🔮 Benefits
### **For Developers**
- **Structured guidance**: Clear frameworks for package decisions
- **Time saving**: Pre-built templates for common scenarios
- **Best practices**: Incorporates industry standards and methodologies
- **Consistency**: Standardized approach to package analysis
### **For Teams**
- **Knowledge sharing**: Consistent evaluation criteria across team members
- **Documentation**: Built-in documentation templates for decisions
- **Risk management**: Structured risk assessment frameworks
- **Planning**: Comprehensive migration and upgrade planning
### **For Projects**
- **Quality assurance**: Systematic package evaluation processes
- **Security**: Built-in security assessment templates
- **Maintenance**: Structured upgrade and migration planning
- **Compliance**: Templates for regulatory and compliance requirements
## 🎯 Integration Ready
The prompt templates are now fully integrated into the PyPI Query MCP Server and ready for use in any MCP-compatible client:
-**Claude Desktop** - Full prompt template support
-**Cursor** - Command palette integration
-**Cline** - Interactive prompt access
-**Windsurf** - Built-in template support
-**Custom clients** - Programmatic API access
## 📊 Impact
This feature significantly enhances the PyPI Query MCP Server by:
1. **Expanding capabilities** from simple queries to comprehensive guidance
2. **Improving user experience** with structured, actionable prompts
3. **Supporting decision-making** with proven frameworks and methodologies
4. **Enabling best practices** through built-in templates and guidance
5. **Facilitating team collaboration** with standardized evaluation criteria
The prompt templates transform the server from a data provider into a comprehensive PyPI package management advisor, making it an essential tool for Python developers and teams.