🗂️ MAJOR DOCS REORGANIZATION: Professional documentation structure implemented ## New Documentation Architecture docs/ ├── user-guide/ # End-user documentation ├── development/ # Technical implementation details ├── migration/ # Upgrade and migration guides ├── reference/ # API references and feature lists └── examples/ # Comprehensive usage examples ## Key Improvements ✅ Logical categorization of all 14 documentation files ✅ Professional docs/ directory following industry standards ✅ Updated internal links to maintain navigation ✅ Comprehensive docs/README.md with navigation ✅ Enhanced main README with docs/ integration ✅ Migration section added for v0.4.0 upgrade guidance ## Documentation Features - 📖 Complete user guides with feature overviews - 🛠️ Technical development documentation - 🔄 Step-by-step migration instructions - 💻 11 comprehensive examples with detailed explanations - 📋 API references and project roadmaps - 🎯 Quick navigation and cross-linking This creates a professional documentation experience that scales with the project and makes information easily discoverable. 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
8.3 KiB
8.3 KiB
Advanced Video Features Roadmap
Building on the existing production-grade 360° video processing and multi-pass encoding foundation.
🎯 Phase 1: AI-Powered Video Analysis
Content Intelligence Engine
Leverage existing metadata extraction + add ML analysis
# New: src/video_processor/ai/content_analyzer.py
class VideoContentAnalyzer:
"""AI-powered video content analysis and scene detection."""
async def analyze_content(self, video_path: Path) -> ContentAnalysis:
"""Comprehensive video content analysis."""
return ContentAnalysis(
scenes=await self._detect_scenes(video_path),
objects=await self._detect_objects(video_path),
faces=await self._detect_faces(video_path),
text=await self._extract_text(video_path),
audio_features=await self._analyze_audio(video_path),
quality_metrics=await self._assess_quality(video_path),
)
Integration with Existing 360° Pipeline
- Extend
Video360Detection
with AI confidence scoring - Smart thumbnail selection based on scene importance
- Automatic 360° viewing angle optimization
Smart Scene Detection
Build on existing sprite generation
# Enhanced: src/video_processor/core/thumbnails.py
class SmartThumbnailGenerator(ThumbnailGenerator):
"""AI-enhanced thumbnail generation with scene detection."""
async def generate_smart_thumbnails(
self, video_path: Path, scene_analysis: SceneAnalysis
) -> list[Path]:
"""Generate thumbnails at optimal scene boundaries."""
# Use existing thumbnail infrastructure + AI scene detection
optimal_timestamps = scene_analysis.get_key_moments()
return await self.generate_thumbnails_at_timestamps(optimal_timestamps)
🎯 Phase 2: Next-Generation Codecs
AV1 Support
Extend existing multi-pass encoding architecture
# Enhanced: src/video_processor/core/encoders.py
class VideoEncoder:
def _encode_av1(self, input_path: Path, output_dir: Path, video_id: str) -> Path:
"""Encode video to AV1 using three-pass encoding."""
# Leverage existing two-pass infrastructure
# Add AV1-specific optimizations for 360° content
quality = self._quality_presets[self.config.quality_preset]
av1_multiplier = self._get_av1_bitrate_multiplier()
return self._multi_pass_encode(
codec="libaom-av1",
passes=3, # AV1 benefits from three-pass
quality_preset=quality,
bitrate_multiplier=av1_multiplier
)
HDR Support Integration
Build on existing quality preset system
# New: src/video_processor/core/hdr_processor.py
class HDRProcessor:
"""HDR video processing with existing quality pipeline."""
def process_hdr_content(
self, video_path: Path, hdr_metadata: HDRMetadata
) -> ProcessedVideo:
"""Process HDR content using existing encoding pipeline."""
# Extend existing quality presets with HDR parameters
enhanced_presets = self._enhance_presets_for_hdr(
self.config.quality_preset, hdr_metadata
)
return self._encode_with_hdr(enhanced_presets)
🎯 Phase 3: Streaming & Real-Time Processing
Adaptive Streaming
Leverage existing multi-format output
# New: src/video_processor/streaming/adaptive.py
class AdaptiveStreamProcessor:
"""Generate adaptive streaming formats from existing encodings."""
async def create_adaptive_stream(
self, video_path: Path, existing_outputs: list[Path]
) -> StreamingPackage:
"""Create HLS/DASH streams from existing MP4/WebM outputs."""
# Use existing encoded files as base
# Generate multiple bitrate ladders
return StreamingPackage(
hls_playlist=await self._create_hls(existing_outputs),
dash_manifest=await self._create_dash(existing_outputs),
thumbnail_track=await self._create_thumbnail_track(),
)
Live Stream Integration
Extend existing Procrastinate task system
# Enhanced: src/video_processor/tasks/streaming_tasks.py
@app.task(queue="streaming")
async def process_live_stream_segment(
segment_path: Path, stream_config: StreamConfig
) -> SegmentResult:
"""Process live stream segments using existing pipeline."""
# Leverage existing encoding infrastructure
# Add real-time optimizations
processor = VideoProcessor(stream_config.to_processor_config())
return await processor.process_segment_realtime(segment_path)
🎯 Phase 4: Advanced 360° Enhancements
Multi-Modal 360° Processing
Build on existing sophisticated 360° pipeline
# Enhanced: src/video_processor/utils/video_360.py
class Advanced360Processor(Video360Utils):
"""Next-generation 360° processing capabilities."""
async def generate_interactive_projections(
self, video_path: Path, viewing_preferences: ViewingProfile
) -> Interactive360Package:
"""Generate multiple projection formats for interactive viewing."""
# Leverage existing projection math
# Add interactive navigation data
return Interactive360Package(
equirectangular=await self._process_equirectangular(),
cubemap=await self._generate_cubemap_faces(),
viewport_optimization=await self._optimize_for_vr_headsets(),
navigation_mesh=await self._create_navigation_data(),
)
Spatial Audio Integration
Extend existing audio processing
# New: src/video_processor/audio/spatial.py
class SpatialAudioProcessor:
"""360° spatial audio processing."""
async def process_ambisonic_audio(
self, video_path: Path, audio_format: AmbisonicFormat
) -> SpatialAudioResult:
"""Process spatial audio using existing audio pipeline."""
# Integrate with existing FFmpeg audio processing
# Add ambisonic encoding support
return await self._encode_spatial_audio(audio_format)
🎯 Implementation Strategy
Phase 1 Priority: AI Content Analysis
Highest ROI - builds directly on existing infrastructure
- Scene Detection API: Use OpenCV (already dependency) + ML models
- Smart Thumbnail Selection: Enhance existing thumbnail generation
- 360° AI Integration: Extend existing 360° detection with confidence scoring
Technical Approach
# Integration point with existing system
class EnhancedVideoProcessor(VideoProcessor):
"""AI-enhanced video processor building on existing foundation."""
def __init__(self, config: ProcessorConfig, enable_ai: bool = True):
super().__init__(config)
if enable_ai:
self.content_analyzer = VideoContentAnalyzer()
self.smart_thumbnail_gen = SmartThumbnailGenerator(config)
async def process_with_ai(self, video_path: Path) -> EnhancedProcessingResult:
"""Enhanced processing with AI analysis."""
# Use existing processing pipeline
standard_result = await super().process_video(video_path)
# Add AI enhancements
if self.content_analyzer:
ai_analysis = await self.content_analyzer.analyze_content(video_path)
enhanced_thumbnails = await self.smart_thumbnail_gen.generate_smart_thumbnails(
video_path, ai_analysis.scenes
)
return EnhancedProcessingResult(
standard_output=standard_result,
ai_analysis=ai_analysis,
smart_thumbnails=enhanced_thumbnails,
)
Development Benefits
- Zero Breaking Changes: All enhancements extend existing APIs
- Optional Features: AI features are opt-in, core pipeline unchanged
- Dependency Isolation: New features use same optional dependency pattern
- Testing Integration: Leverage existing comprehensive test framework
Next Steps
- Start with Scene Detection: Implement basic scene boundary detection using OpenCV
- Integrate with Existing Thumbnails: Enhance thumbnail selection with scene analysis
- Add AI Configuration: Extend ProcessorConfig with AI options
- Comprehensive Testing: Use existing test framework for AI features
This roadmap leverages the excellent existing foundation while adding cutting-edge capabilities that provide significant competitive advantages.