forked from MCP/llm-fusion-mcp
- Unified access to 4 major LLM providers (Gemini, OpenAI, Anthropic, Grok) - Real-time streaming support across all providers - Multimodal capabilities (text, images, audio) - Intelligent document processing with smart chunking - Production-ready with health monitoring and error handling - Full OpenAI ecosystem integration (Assistants, DALL-E, Whisper) - Vector embeddings and semantic similarity - Session-based API key management - Built with FastMCP and modern Python tooling 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
2.1 KiB
2.1 KiB
LLM Fusion MCP - Claude Code Integration Guide
Quick Setup
-
Install the MCP server:
./install.sh
-
Configure API keys in
.env
:GOOGLE_API_KEY=your_google_api_key OPENAI_API_KEY=your_openai_api_key # Optional ANTHROPIC_API_KEY=your_anthropic_key # Optional XAI_API_KEY=your_xai_key # Optional
-
Add to Claude Code (recommended):
claude mcp add -s local -- gemini-mcp /home/rpm/claude/gemini-mcp/run_server.sh
Or via JSON configuration:
{ "mcpServers": { "gemini-mcp": { "command": "/home/rpm/claude/gemini-mcp/run_server.sh", "env": { "GOOGLE_API_KEY": "${GOOGLE_API_KEY}", "OPENAI_API_KEY": "${OPENAI_API_KEY}", "ANTHROPIC_API_KEY": "${ANTHROPIC_API_KEY}", "XAI_API_KEY": "${XAI_API_KEY}" } } } }
Available Tools
🎯 Core LLM Tools
llm_generate()
- Universal text generation across all providersllm_analyze_large_file()
- Intelligent large document analysisllm_analyze_image()
- Image understanding and analysisllm_analyze_audio()
- Audio transcription and analysisllm_with_tools()
- Function calling during generation
📊 Embeddings & Similarity
llm_embed_text()
- Generate vector embeddingsllm_similarity()
- Calculate semantic similarity
🔧 Provider Management
llm_set_provider()
- Switch default providerllm_get_provider()
- Get current provider infollm_list_providers()
- List all available providersllm_health_check()
- Check provider status
🛠️ Utilities
llm_utility_calculator()
- Basic math operations
Supported Providers
- Gemini: Latest 2.5 models (up to 1M token context)
- OpenAI: GPT-4.1, O-series reasoning models (up to 1M token context)
- Anthropic: Claude 4 Sonnet/Haiku (200K token context)
- Grok: Latest models (100K token context)
Testing
Test the installation:
# Test the MCP server
uvx --from . gemini-mcp
# Test all tools
uv run python test_all_tools.py