Professional video processing pipeline with AI analysis, 360° processing, and adaptive streaming capabilities. ✨ Core Features: • AI-powered content analysis with scene detection and quality assessment • Next-generation codec support (AV1, HEVC, HDR10) • Adaptive streaming (HLS/DASH) with smart bitrate ladders • Complete 360° video processing with multiple projection support • Spatial audio processing (Ambisonic, binaural, object-based) • Viewport-adaptive streaming with up to 75% bandwidth savings • Professional testing framework with video-themed HTML dashboards 🏗️ Architecture: • Modern Python 3.11+ with full type hints • Pydantic-based configuration with validation • Async processing with Procrastinate task queue • Comprehensive test coverage with 11 detailed examples • Professional documentation structure 🚀 Production Ready: • MIT License for open source use • PyPI-ready package metadata • Docker support for scalable deployment • Quality assurance with ruff, mypy, and pytest • Comprehensive example library From simple encoding to immersive experiences - complete multimedia processing platform for modern applications.
223 lines
8.3 KiB
Markdown
223 lines
8.3 KiB
Markdown
# Advanced Video Features Roadmap
|
|
|
|
Building on the existing production-grade 360° video processing and multi-pass encoding foundation.
|
|
|
|
## 🎯 Phase 1: AI-Powered Video Analysis
|
|
|
|
### Content Intelligence Engine
|
|
**Leverage existing metadata extraction + add ML analysis**
|
|
|
|
```python
|
|
# New: src/video_processor/ai/content_analyzer.py
|
|
class VideoContentAnalyzer:
|
|
"""AI-powered video content analysis and scene detection."""
|
|
|
|
async def analyze_content(self, video_path: Path) -> ContentAnalysis:
|
|
"""Comprehensive video content analysis."""
|
|
return ContentAnalysis(
|
|
scenes=await self._detect_scenes(video_path),
|
|
objects=await self._detect_objects(video_path),
|
|
faces=await self._detect_faces(video_path),
|
|
text=await self._extract_text(video_path),
|
|
audio_features=await self._analyze_audio(video_path),
|
|
quality_metrics=await self._assess_quality(video_path),
|
|
)
|
|
```
|
|
|
|
**Integration with Existing 360° Pipeline**
|
|
- Extend `Video360Detection` with AI confidence scoring
|
|
- Smart thumbnail selection based on scene importance
|
|
- Automatic 360° viewing angle optimization
|
|
|
|
### Smart Scene Detection
|
|
**Build on existing sprite generation**
|
|
|
|
```python
|
|
# Enhanced: src/video_processor/core/thumbnails.py
|
|
class SmartThumbnailGenerator(ThumbnailGenerator):
|
|
"""AI-enhanced thumbnail generation with scene detection."""
|
|
|
|
async def generate_smart_thumbnails(
|
|
self, video_path: Path, scene_analysis: SceneAnalysis
|
|
) -> list[Path]:
|
|
"""Generate thumbnails at optimal scene boundaries."""
|
|
# Use existing thumbnail infrastructure + AI scene detection
|
|
optimal_timestamps = scene_analysis.get_key_moments()
|
|
return await self.generate_thumbnails_at_timestamps(optimal_timestamps)
|
|
```
|
|
|
|
## 🎯 Phase 2: Next-Generation Codecs
|
|
|
|
### AV1 Support
|
|
**Extend existing multi-pass encoding architecture**
|
|
|
|
```python
|
|
# Enhanced: src/video_processor/core/encoders.py
|
|
class VideoEncoder:
|
|
def _encode_av1(self, input_path: Path, output_dir: Path, video_id: str) -> Path:
|
|
"""Encode video to AV1 using three-pass encoding."""
|
|
# Leverage existing two-pass infrastructure
|
|
# Add AV1-specific optimizations for 360° content
|
|
quality = self._quality_presets[self.config.quality_preset]
|
|
av1_multiplier = self._get_av1_bitrate_multiplier()
|
|
|
|
return self._multi_pass_encode(
|
|
codec="libaom-av1",
|
|
passes=3, # AV1 benefits from three-pass
|
|
quality_preset=quality,
|
|
bitrate_multiplier=av1_multiplier
|
|
)
|
|
```
|
|
|
|
### HDR Support Integration
|
|
**Build on existing quality preset system**
|
|
|
|
```python
|
|
# New: src/video_processor/core/hdr_processor.py
|
|
class HDRProcessor:
|
|
"""HDR video processing with existing quality pipeline."""
|
|
|
|
def process_hdr_content(
|
|
self, video_path: Path, hdr_metadata: HDRMetadata
|
|
) -> ProcessedVideo:
|
|
"""Process HDR content using existing encoding pipeline."""
|
|
# Extend existing quality presets with HDR parameters
|
|
enhanced_presets = self._enhance_presets_for_hdr(
|
|
self.config.quality_preset, hdr_metadata
|
|
)
|
|
return self._encode_with_hdr(enhanced_presets)
|
|
```
|
|
|
|
## 🎯 Phase 3: Streaming & Real-Time Processing
|
|
|
|
### Adaptive Streaming
|
|
**Leverage existing multi-format output**
|
|
|
|
```python
|
|
# New: src/video_processor/streaming/adaptive.py
|
|
class AdaptiveStreamProcessor:
|
|
"""Generate adaptive streaming formats from existing encodings."""
|
|
|
|
async def create_adaptive_stream(
|
|
self, video_path: Path, existing_outputs: list[Path]
|
|
) -> StreamingPackage:
|
|
"""Create HLS/DASH streams from existing MP4/WebM outputs."""
|
|
# Use existing encoded files as base
|
|
# Generate multiple bitrate ladders
|
|
return StreamingPackage(
|
|
hls_playlist=await self._create_hls(existing_outputs),
|
|
dash_manifest=await self._create_dash(existing_outputs),
|
|
thumbnail_track=await self._create_thumbnail_track(),
|
|
)
|
|
```
|
|
|
|
### Live Stream Integration
|
|
**Extend existing Procrastinate task system**
|
|
|
|
```python
|
|
# Enhanced: src/video_processor/tasks/streaming_tasks.py
|
|
@app.task(queue="streaming")
|
|
async def process_live_stream_segment(
|
|
segment_path: Path, stream_config: StreamConfig
|
|
) -> SegmentResult:
|
|
"""Process live stream segments using existing pipeline."""
|
|
# Leverage existing encoding infrastructure
|
|
# Add real-time optimizations
|
|
processor = VideoProcessor(stream_config.to_processor_config())
|
|
return await processor.process_segment_realtime(segment_path)
|
|
```
|
|
|
|
## 🎯 Phase 4: Advanced 360° Enhancements
|
|
|
|
### Multi-Modal 360° Processing
|
|
**Build on existing sophisticated 360° pipeline**
|
|
|
|
```python
|
|
# Enhanced: src/video_processor/utils/video_360.py
|
|
class Advanced360Processor(Video360Utils):
|
|
"""Next-generation 360° processing capabilities."""
|
|
|
|
async def generate_interactive_projections(
|
|
self, video_path: Path, viewing_preferences: ViewingProfile
|
|
) -> Interactive360Package:
|
|
"""Generate multiple projection formats for interactive viewing."""
|
|
# Leverage existing projection math
|
|
# Add interactive navigation data
|
|
return Interactive360Package(
|
|
equirectangular=await self._process_equirectangular(),
|
|
cubemap=await self._generate_cubemap_faces(),
|
|
viewport_optimization=await self._optimize_for_vr_headsets(),
|
|
navigation_mesh=await self._create_navigation_data(),
|
|
)
|
|
```
|
|
|
|
### Spatial Audio Integration
|
|
**Extend existing audio processing**
|
|
|
|
```python
|
|
# New: src/video_processor/audio/spatial.py
|
|
class SpatialAudioProcessor:
|
|
"""360° spatial audio processing."""
|
|
|
|
async def process_ambisonic_audio(
|
|
self, video_path: Path, audio_format: AmbisonicFormat
|
|
) -> SpatialAudioResult:
|
|
"""Process spatial audio using existing audio pipeline."""
|
|
# Integrate with existing FFmpeg audio processing
|
|
# Add ambisonic encoding support
|
|
return await self._encode_spatial_audio(audio_format)
|
|
```
|
|
|
|
## 🎯 Implementation Strategy
|
|
|
|
### Phase 1 Priority: AI Content Analysis
|
|
**Highest ROI - builds directly on existing infrastructure**
|
|
|
|
1. **Scene Detection API**: Use OpenCV (already dependency) + ML models
|
|
2. **Smart Thumbnail Selection**: Enhance existing thumbnail generation
|
|
3. **360° AI Integration**: Extend existing 360° detection with confidence scoring
|
|
|
|
### Technical Approach
|
|
```python
|
|
# Integration point with existing system
|
|
class EnhancedVideoProcessor(VideoProcessor):
|
|
"""AI-enhanced video processor building on existing foundation."""
|
|
|
|
def __init__(self, config: ProcessorConfig, enable_ai: bool = True):
|
|
super().__init__(config)
|
|
if enable_ai:
|
|
self.content_analyzer = VideoContentAnalyzer()
|
|
self.smart_thumbnail_gen = SmartThumbnailGenerator(config)
|
|
|
|
async def process_with_ai(self, video_path: Path) -> EnhancedProcessingResult:
|
|
"""Enhanced processing with AI analysis."""
|
|
# Use existing processing pipeline
|
|
standard_result = await super().process_video(video_path)
|
|
|
|
# Add AI enhancements
|
|
if self.content_analyzer:
|
|
ai_analysis = await self.content_analyzer.analyze_content(video_path)
|
|
enhanced_thumbnails = await self.smart_thumbnail_gen.generate_smart_thumbnails(
|
|
video_path, ai_analysis.scenes
|
|
)
|
|
|
|
return EnhancedProcessingResult(
|
|
standard_output=standard_result,
|
|
ai_analysis=ai_analysis,
|
|
smart_thumbnails=enhanced_thumbnails,
|
|
)
|
|
```
|
|
|
|
### Development Benefits
|
|
- **Zero Breaking Changes**: All enhancements extend existing APIs
|
|
- **Optional Features**: AI features are opt-in, core pipeline unchanged
|
|
- **Dependency Isolation**: New features use same optional dependency pattern
|
|
- **Testing Integration**: Leverage existing comprehensive test framework
|
|
|
|
### Next Steps
|
|
1. **Start with Scene Detection**: Implement basic scene boundary detection using OpenCV
|
|
2. **Integrate with Existing Thumbnails**: Enhance thumbnail selection with scene analysis
|
|
3. **Add AI Configuration**: Extend ProcessorConfig with AI options
|
|
4. **Comprehensive Testing**: Use existing test framework for AI features
|
|
|
|
This roadmap leverages the excellent existing foundation while adding cutting-edge capabilities that provide significant competitive advantages. |