Ryan Malloy 840bd34f29 🎬 Video Processor v0.4.0 - Complete Multimedia Processing Platform
Professional video processing pipeline with AI analysis, 360° processing,
and adaptive streaming capabilities.

 Core Features:
• AI-powered content analysis with scene detection and quality assessment
• Next-generation codec support (AV1, HEVC, HDR10)
• Adaptive streaming (HLS/DASH) with smart bitrate ladders
• Complete 360° video processing with multiple projection support
• Spatial audio processing (Ambisonic, binaural, object-based)
• Viewport-adaptive streaming with up to 75% bandwidth savings
• Professional testing framework with video-themed HTML dashboards

🏗️ Architecture:
• Modern Python 3.11+ with full type hints
• Pydantic-based configuration with validation
• Async processing with Procrastinate task queue
• Comprehensive test coverage with 11 detailed examples
• Professional documentation structure

🚀 Production Ready:
• MIT License for open source use
• PyPI-ready package metadata
• Docker support for scalable deployment
• Quality assurance with ruff, mypy, and pytest
• Comprehensive example library

From simple encoding to immersive experiences - complete multimedia
processing platform for modern applications.
2025-09-22 01:18:49 -06:00

223 lines
8.3 KiB
Markdown

# Advanced Video Features Roadmap
Building on the existing production-grade 360° video processing and multi-pass encoding foundation.
## 🎯 Phase 1: AI-Powered Video Analysis
### Content Intelligence Engine
**Leverage existing metadata extraction + add ML analysis**
```python
# New: src/video_processor/ai/content_analyzer.py
class VideoContentAnalyzer:
"""AI-powered video content analysis and scene detection."""
async def analyze_content(self, video_path: Path) -> ContentAnalysis:
"""Comprehensive video content analysis."""
return ContentAnalysis(
scenes=await self._detect_scenes(video_path),
objects=await self._detect_objects(video_path),
faces=await self._detect_faces(video_path),
text=await self._extract_text(video_path),
audio_features=await self._analyze_audio(video_path),
quality_metrics=await self._assess_quality(video_path),
)
```
**Integration with Existing 360° Pipeline**
- Extend `Video360Detection` with AI confidence scoring
- Smart thumbnail selection based on scene importance
- Automatic 360° viewing angle optimization
### Smart Scene Detection
**Build on existing sprite generation**
```python
# Enhanced: src/video_processor/core/thumbnails.py
class SmartThumbnailGenerator(ThumbnailGenerator):
"""AI-enhanced thumbnail generation with scene detection."""
async def generate_smart_thumbnails(
self, video_path: Path, scene_analysis: SceneAnalysis
) -> list[Path]:
"""Generate thumbnails at optimal scene boundaries."""
# Use existing thumbnail infrastructure + AI scene detection
optimal_timestamps = scene_analysis.get_key_moments()
return await self.generate_thumbnails_at_timestamps(optimal_timestamps)
```
## 🎯 Phase 2: Next-Generation Codecs
### AV1 Support
**Extend existing multi-pass encoding architecture**
```python
# Enhanced: src/video_processor/core/encoders.py
class VideoEncoder:
def _encode_av1(self, input_path: Path, output_dir: Path, video_id: str) -> Path:
"""Encode video to AV1 using three-pass encoding."""
# Leverage existing two-pass infrastructure
# Add AV1-specific optimizations for 360° content
quality = self._quality_presets[self.config.quality_preset]
av1_multiplier = self._get_av1_bitrate_multiplier()
return self._multi_pass_encode(
codec="libaom-av1",
passes=3, # AV1 benefits from three-pass
quality_preset=quality,
bitrate_multiplier=av1_multiplier
)
```
### HDR Support Integration
**Build on existing quality preset system**
```python
# New: src/video_processor/core/hdr_processor.py
class HDRProcessor:
"""HDR video processing with existing quality pipeline."""
def process_hdr_content(
self, video_path: Path, hdr_metadata: HDRMetadata
) -> ProcessedVideo:
"""Process HDR content using existing encoding pipeline."""
# Extend existing quality presets with HDR parameters
enhanced_presets = self._enhance_presets_for_hdr(
self.config.quality_preset, hdr_metadata
)
return self._encode_with_hdr(enhanced_presets)
```
## 🎯 Phase 3: Streaming & Real-Time Processing
### Adaptive Streaming
**Leverage existing multi-format output**
```python
# New: src/video_processor/streaming/adaptive.py
class AdaptiveStreamProcessor:
"""Generate adaptive streaming formats from existing encodings."""
async def create_adaptive_stream(
self, video_path: Path, existing_outputs: list[Path]
) -> StreamingPackage:
"""Create HLS/DASH streams from existing MP4/WebM outputs."""
# Use existing encoded files as base
# Generate multiple bitrate ladders
return StreamingPackage(
hls_playlist=await self._create_hls(existing_outputs),
dash_manifest=await self._create_dash(existing_outputs),
thumbnail_track=await self._create_thumbnail_track(),
)
```
### Live Stream Integration
**Extend existing Procrastinate task system**
```python
# Enhanced: src/video_processor/tasks/streaming_tasks.py
@app.task(queue="streaming")
async def process_live_stream_segment(
segment_path: Path, stream_config: StreamConfig
) -> SegmentResult:
"""Process live stream segments using existing pipeline."""
# Leverage existing encoding infrastructure
# Add real-time optimizations
processor = VideoProcessor(stream_config.to_processor_config())
return await processor.process_segment_realtime(segment_path)
```
## 🎯 Phase 4: Advanced 360° Enhancements
### Multi-Modal 360° Processing
**Build on existing sophisticated 360° pipeline**
```python
# Enhanced: src/video_processor/utils/video_360.py
class Advanced360Processor(Video360Utils):
"""Next-generation 360° processing capabilities."""
async def generate_interactive_projections(
self, video_path: Path, viewing_preferences: ViewingProfile
) -> Interactive360Package:
"""Generate multiple projection formats for interactive viewing."""
# Leverage existing projection math
# Add interactive navigation data
return Interactive360Package(
equirectangular=await self._process_equirectangular(),
cubemap=await self._generate_cubemap_faces(),
viewport_optimization=await self._optimize_for_vr_headsets(),
navigation_mesh=await self._create_navigation_data(),
)
```
### Spatial Audio Integration
**Extend existing audio processing**
```python
# New: src/video_processor/audio/spatial.py
class SpatialAudioProcessor:
"""360° spatial audio processing."""
async def process_ambisonic_audio(
self, video_path: Path, audio_format: AmbisonicFormat
) -> SpatialAudioResult:
"""Process spatial audio using existing audio pipeline."""
# Integrate with existing FFmpeg audio processing
# Add ambisonic encoding support
return await self._encode_spatial_audio(audio_format)
```
## 🎯 Implementation Strategy
### Phase 1 Priority: AI Content Analysis
**Highest ROI - builds directly on existing infrastructure**
1. **Scene Detection API**: Use OpenCV (already dependency) + ML models
2. **Smart Thumbnail Selection**: Enhance existing thumbnail generation
3. **360° AI Integration**: Extend existing 360° detection with confidence scoring
### Technical Approach
```python
# Integration point with existing system
class EnhancedVideoProcessor(VideoProcessor):
"""AI-enhanced video processor building on existing foundation."""
def __init__(self, config: ProcessorConfig, enable_ai: bool = True):
super().__init__(config)
if enable_ai:
self.content_analyzer = VideoContentAnalyzer()
self.smart_thumbnail_gen = SmartThumbnailGenerator(config)
async def process_with_ai(self, video_path: Path) -> EnhancedProcessingResult:
"""Enhanced processing with AI analysis."""
# Use existing processing pipeline
standard_result = await super().process_video(video_path)
# Add AI enhancements
if self.content_analyzer:
ai_analysis = await self.content_analyzer.analyze_content(video_path)
enhanced_thumbnails = await self.smart_thumbnail_gen.generate_smart_thumbnails(
video_path, ai_analysis.scenes
)
return EnhancedProcessingResult(
standard_output=standard_result,
ai_analysis=ai_analysis,
smart_thumbnails=enhanced_thumbnails,
)
```
### Development Benefits
- **Zero Breaking Changes**: All enhancements extend existing APIs
- **Optional Features**: AI features are opt-in, core pipeline unchanged
- **Dependency Isolation**: New features use same optional dependency pattern
- **Testing Integration**: Leverage existing comprehensive test framework
### Next Steps
1. **Start with Scene Detection**: Implement basic scene boundary detection using OpenCV
2. **Integrate with Existing Thumbnails**: Enhance thumbnail selection with scene analysis
3. **Add AI Configuration**: Extend ProcessorConfig with AI options
4. **Comprehensive Testing**: Use existing test framework for AI features
This roadmap leverages the excellent existing foundation while adding cutting-edge capabilities that provide significant competitive advantages.